MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthepi Structured version   Visualization version   GIF version

Theorem fthepi 17855
Description: A faithful functor reflects epimorphisms. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthmon.b 𝐵 = (Base‘𝐶)
fthmon.h 𝐻 = (Hom ‘𝐶)
fthmon.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthmon.x (𝜑𝑋𝐵)
fthmon.y (𝜑𝑌𝐵)
fthmon.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
fthepi.e 𝐸 = (Epi‘𝐶)
fthepi.p 𝑃 = (Epi‘𝐷)
fthepi.1 (𝜑 → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑃(𝐹𝑌)))
Assertion
Ref Expression
fthepi (𝜑𝑅 ∈ (𝑋𝐸𝑌))

Proof of Theorem fthepi
StepHypRef Expression
1 eqid 2729 . . . 4 (oppCat‘𝐶) = (oppCat‘𝐶)
2 fthmon.b . . . 4 𝐵 = (Base‘𝐶)
31, 2oppcbas 17642 . . 3 𝐵 = (Base‘(oppCat‘𝐶))
4 eqid 2729 . . 3 (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶))
5 eqid 2729 . . . 4 (oppCat‘𝐷) = (oppCat‘𝐷)
6 fthmon.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
71, 5, 6fthoppc 17850 . . 3 (𝜑𝐹((oppCat‘𝐶) Faith (oppCat‘𝐷))tpos 𝐺)
8 fthmon.y . . 3 (𝜑𝑌𝐵)
9 fthmon.x . . 3 (𝜑𝑋𝐵)
10 fthmon.r . . . 4 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
11 fthmon.h . . . . 5 𝐻 = (Hom ‘𝐶)
1211, 1oppchom 17639 . . . 4 (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌)
1310, 12eleqtrrdi 2839 . . 3 (𝜑𝑅 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋))
14 eqid 2729 . . 3 (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶))
15 eqid 2729 . . 3 (Mono‘(oppCat‘𝐷)) = (Mono‘(oppCat‘𝐷))
16 ovtpos 8181 . . . . . 6 (𝑌tpos 𝐺𝑋) = (𝑋𝐺𝑌)
1716fveq1i 6827 . . . . 5 ((𝑌tpos 𝐺𝑋)‘𝑅) = ((𝑋𝐺𝑌)‘𝑅)
18 fthepi.1 . . . . 5 (𝜑 → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑃(𝐹𝑌)))
1917, 18eqeltrid 2832 . . . 4 (𝜑 → ((𝑌tpos 𝐺𝑋)‘𝑅) ∈ ((𝐹𝑋)𝑃(𝐹𝑌)))
20 fthfunc 17834 . . . . . . . . . 10 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
2120ssbri 5140 . . . . . . . . 9 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
226, 21syl 17 . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
23 df-br 5096 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
2422, 23sylib 218 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
25 funcrcl 17788 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2624, 25syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2726simprd 495 . . . . 5 (𝜑𝐷 ∈ Cat)
28 fthepi.p . . . . 5 𝑃 = (Epi‘𝐷)
295, 27, 15, 28oppcmon 17663 . . . 4 (𝜑 → ((𝐹𝑌)(Mono‘(oppCat‘𝐷))(𝐹𝑋)) = ((𝐹𝑋)𝑃(𝐹𝑌)))
3019, 29eleqtrrd 2831 . . 3 (𝜑 → ((𝑌tpos 𝐺𝑋)‘𝑅) ∈ ((𝐹𝑌)(Mono‘(oppCat‘𝐷))(𝐹𝑋)))
313, 4, 7, 8, 9, 13, 14, 15, 30fthmon 17854 . 2 (𝜑𝑅 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋))
3226simpld 494 . . 3 (𝜑𝐶 ∈ Cat)
33 fthepi.e . . 3 𝐸 = (Epi‘𝐶)
341, 32, 14, 33oppcmon 17663 . 2 (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌))
3531, 34eleqtrd 2830 1 (𝜑𝑅 ∈ (𝑋𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4585   class class class wbr 5095  cfv 6486  (class class class)co 7353  tpos ctpos 8165  Basecbs 17138  Hom chom 17190  Catccat 17588  oppCatcoppc 17635  Monocmon 17653  Epicepi 17654   Func cfunc 17779   Faith cfth 17830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-hom 17203  df-cco 17204  df-cat 17592  df-cid 17593  df-oppc 17636  df-mon 17655  df-epi 17656  df-func 17783  df-fth 17832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator