![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fthinv | Structured version Visualization version GIF version |
Description: A faithful functor reflects inverses. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
fthsect.b | ⊢ 𝐵 = (Base‘𝐶) |
fthsect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
fthsect.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
fthsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
fthsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
fthsect.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) |
fthsect.n | ⊢ (𝜑 → 𝑁 ∈ (𝑌𝐻𝑋)) |
fthinv.s | ⊢ 𝐼 = (Inv‘𝐶) |
fthinv.t | ⊢ 𝐽 = (Inv‘𝐷) |
Ref | Expression |
---|---|
fthinv | ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fthsect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | fthsect.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | fthsect.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
4 | fthsect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | fthsect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | fthsect.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) | |
7 | fthsect.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝑌𝐻𝑋)) | |
8 | eqid 2740 | . . . 4 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
9 | eqid 2740 | . . . 4 ⊢ (Sect‘𝐷) = (Sect‘𝐷) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | fthsect 17992 | . . 3 ⊢ (𝜑 → (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐷)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁))) |
11 | 1, 2, 3, 5, 4, 7, 6, 8, 9 | fthsect 17992 | . . 3 ⊢ (𝜑 → (𝑁(𝑌(Sect‘𝐶)𝑋)𝑀 ↔ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀))) |
12 | 10, 11 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐶)𝑋)𝑀) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐷)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)))) |
13 | fthinv.s | . . 3 ⊢ 𝐼 = (Inv‘𝐶) | |
14 | fthfunc 17974 | . . . . . . . 8 ⊢ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷) | |
15 | 14 | ssbri 5211 | . . . . . . 7 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
16 | 3, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
17 | df-br 5167 | . . . . . 6 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
18 | 16, 17 | sylib 218 | . . . . 5 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
19 | funcrcl 17927 | . . . . 5 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
21 | 20 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
22 | 1, 13, 21, 4, 5, 8 | isinv 17821 | . 2 ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐶)𝑋)𝑀))) |
23 | eqid 2740 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
24 | fthinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝐷) | |
25 | 20 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) |
26 | 1, 23, 16 | funcf1 17930 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐷)) |
27 | 26, 4 | ffvelcdmd 7119 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
28 | 26, 5 | ffvelcdmd 7119 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐷)) |
29 | 23, 24, 25, 27, 28, 9 | isinv 17821 | . 2 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐷)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)))) |
30 | 12, 22, 29 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 Catccat 17722 Sectcsect 17805 Invcinv 17806 Func cfunc 17918 Faith cfth 17970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-ixp 8956 df-cat 17726 df-cid 17727 df-sect 17808 df-inv 17809 df-func 17922 df-fth 17972 |
This theorem is referenced by: ffthiso 17996 |
Copyright terms: Public domain | W3C validator |