| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fthinv | Structured version Visualization version GIF version | ||
| Description: A faithful functor reflects inverses. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| fthsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| fthsect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| fthsect.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
| fthsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| fthsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| fthsect.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) |
| fthsect.n | ⊢ (𝜑 → 𝑁 ∈ (𝑌𝐻𝑋)) |
| fthinv.s | ⊢ 𝐼 = (Inv‘𝐶) |
| fthinv.t | ⊢ 𝐽 = (Inv‘𝐷) |
| Ref | Expression |
|---|---|
| fthinv | ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthsect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | fthsect.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | fthsect.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
| 4 | fthsect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | fthsect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | fthsect.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) | |
| 7 | fthsect.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝑌𝐻𝑋)) | |
| 8 | eqid 2730 | . . . 4 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 9 | eqid 2730 | . . . 4 ⊢ (Sect‘𝐷) = (Sect‘𝐷) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | fthsect 17896 | . . 3 ⊢ (𝜑 → (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐷)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁))) |
| 11 | 1, 2, 3, 5, 4, 7, 6, 8, 9 | fthsect 17896 | . . 3 ⊢ (𝜑 → (𝑁(𝑌(Sect‘𝐶)𝑋)𝑀 ↔ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀))) |
| 12 | 10, 11 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐶)𝑋)𝑀) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐷)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)))) |
| 13 | fthinv.s | . . 3 ⊢ 𝐼 = (Inv‘𝐶) | |
| 14 | fthfunc 17878 | . . . . . . . 8 ⊢ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷) | |
| 15 | 14 | ssbri 5155 | . . . . . . 7 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 16 | 3, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 17 | df-br 5111 | . . . . . 6 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
| 18 | 16, 17 | sylib 218 | . . . . 5 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 19 | funcrcl 17832 | . . . . 5 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 21 | 20 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 22 | 1, 13, 21, 4, 5, 8 | isinv 17729 | . 2 ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐶)𝑋)𝑀))) |
| 23 | eqid 2730 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 24 | fthinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝐷) | |
| 25 | 20 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 26 | 1, 23, 16 | funcf1 17835 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐷)) |
| 27 | 26, 4 | ffvelcdmd 7060 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
| 28 | 26, 5 | ffvelcdmd 7060 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐷)) |
| 29 | 23, 24, 25, 27, 28, 9 | isinv 17729 | . 2 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐷)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)))) |
| 30 | 12, 22, 29 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Hom chom 17238 Catccat 17632 Sectcsect 17713 Invcinv 17714 Func cfunc 17823 Faith cfth 17874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-ixp 8874 df-cat 17636 df-cid 17637 df-sect 17716 df-inv 17717 df-func 17827 df-fth 17876 |
| This theorem is referenced by: ffthiso 17900 |
| Copyright terms: Public domain | W3C validator |