| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fthinv | Structured version Visualization version GIF version | ||
| Description: A faithful functor reflects inverses. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| fthsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| fthsect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| fthsect.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
| fthsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| fthsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| fthsect.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) |
| fthsect.n | ⊢ (𝜑 → 𝑁 ∈ (𝑌𝐻𝑋)) |
| fthinv.s | ⊢ 𝐼 = (Inv‘𝐶) |
| fthinv.t | ⊢ 𝐽 = (Inv‘𝐷) |
| Ref | Expression |
|---|---|
| fthinv | ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthsect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | fthsect.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | fthsect.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
| 4 | fthsect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | fthsect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | fthsect.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) | |
| 7 | fthsect.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝑌𝐻𝑋)) | |
| 8 | eqid 2735 | . . . 4 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 9 | eqid 2735 | . . . 4 ⊢ (Sect‘𝐷) = (Sect‘𝐷) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | fthsect 17940 | . . 3 ⊢ (𝜑 → (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐷)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁))) |
| 11 | 1, 2, 3, 5, 4, 7, 6, 8, 9 | fthsect 17940 | . . 3 ⊢ (𝜑 → (𝑁(𝑌(Sect‘𝐶)𝑋)𝑀 ↔ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀))) |
| 12 | 10, 11 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐶)𝑋)𝑀) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐷)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)))) |
| 13 | fthinv.s | . . 3 ⊢ 𝐼 = (Inv‘𝐶) | |
| 14 | fthfunc 17922 | . . . . . . . 8 ⊢ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷) | |
| 15 | 14 | ssbri 5164 | . . . . . . 7 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 16 | 3, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 17 | df-br 5120 | . . . . . 6 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
| 18 | 16, 17 | sylib 218 | . . . . 5 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 19 | funcrcl 17876 | . . . . 5 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 21 | 20 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 22 | 1, 13, 21, 4, 5, 8 | isinv 17773 | . 2 ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐶)𝑋)𝑀))) |
| 23 | eqid 2735 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 24 | fthinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝐷) | |
| 25 | 20 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 26 | 1, 23, 16 | funcf1 17879 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐷)) |
| 27 | 26, 4 | ffvelcdmd 7075 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
| 28 | 26, 5 | ffvelcdmd 7075 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐷)) |
| 29 | 23, 24, 25, 27, 28, 9 | isinv 17773 | . 2 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐷)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)))) |
| 30 | 12, 22, 29 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Hom chom 17282 Catccat 17676 Sectcsect 17757 Invcinv 17758 Func cfunc 17867 Faith cfth 17918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-ixp 8912 df-cat 17680 df-cid 17681 df-sect 17760 df-inv 17761 df-func 17871 df-fth 17920 |
| This theorem is referenced by: ffthiso 17944 |
| Copyright terms: Public domain | W3C validator |