MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthinv Structured version   Visualization version   GIF version

Theorem fthinv 17433
Description: A faithful functor reflects inverses. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthsect.b 𝐵 = (Base‘𝐶)
fthsect.h 𝐻 = (Hom ‘𝐶)
fthsect.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthsect.x (𝜑𝑋𝐵)
fthsect.y (𝜑𝑌𝐵)
fthsect.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
fthsect.n (𝜑𝑁 ∈ (𝑌𝐻𝑋))
fthinv.s 𝐼 = (Inv‘𝐶)
fthinv.t 𝐽 = (Inv‘𝐷)
Assertion
Ref Expression
fthinv (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))

Proof of Theorem fthinv
StepHypRef Expression
1 fthsect.b . . . 4 𝐵 = (Base‘𝐶)
2 fthsect.h . . . 4 𝐻 = (Hom ‘𝐶)
3 fthsect.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
4 fthsect.x . . . 4 (𝜑𝑋𝐵)
5 fthsect.y . . . 4 (𝜑𝑌𝐵)
6 fthsect.m . . . 4 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
7 fthsect.n . . . 4 (𝜑𝑁 ∈ (𝑌𝐻𝑋))
8 eqid 2737 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
9 eqid 2737 . . . 4 (Sect‘𝐷) = (Sect‘𝐷)
101, 2, 3, 4, 5, 6, 7, 8, 9fthsect 17432 . . 3 (𝜑 → (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))
111, 2, 3, 5, 4, 7, 6, 8, 9fthsect 17432 . . 3 (𝜑 → (𝑁(𝑌(Sect‘𝐶)𝑋)𝑀 ↔ ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)))
1210, 11anbi12d 634 . 2 (𝜑 → ((𝑀(𝑋(Sect‘𝐶)𝑌)𝑁𝑁(𝑌(Sect‘𝐶)𝑋)𝑀) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀))))
13 fthinv.s . . 3 𝐼 = (Inv‘𝐶)
14 fthfunc 17414 . . . . . . . 8 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
1514ssbri 5098 . . . . . . 7 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
163, 15syl 17 . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
17 df-br 5054 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
1816, 17sylib 221 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
19 funcrcl 17369 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2018, 19syl 17 . . . 4 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2120simpld 498 . . 3 (𝜑𝐶 ∈ Cat)
221, 13, 21, 4, 5, 8isinv 17265 . 2 (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁𝑁(𝑌(Sect‘𝐶)𝑋)𝑀)))
23 eqid 2737 . . 3 (Base‘𝐷) = (Base‘𝐷)
24 fthinv.t . . 3 𝐽 = (Inv‘𝐷)
2520simprd 499 . . 3 (𝜑𝐷 ∈ Cat)
261, 23, 16funcf1 17372 . . . 4 (𝜑𝐹:𝐵⟶(Base‘𝐷))
2726, 4ffvelrnd 6905 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
2826, 5ffvelrnd 6905 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
2923, 24, 25, 27, 28, 9isinv 17265 . 2 (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀))))
3012, 22, 293bitr4d 314 1 (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  cop 4547   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  Hom chom 16813  Catccat 17167  Sectcsect 17249  Invcinv 17250   Func cfunc 17360   Faith cfth 17410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-map 8510  df-ixp 8579  df-cat 17171  df-cid 17172  df-sect 17252  df-inv 17253  df-func 17364  df-fth 17412
This theorem is referenced by:  ffthiso  17436
  Copyright terms: Public domain W3C validator