Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerrel Structured version   Visualization version   GIF version

Theorem nqerrel 10347
 Description: Any member of (N × N) relates to the representative of its equivalence class. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerrel (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))

Proof of Theorem nqerrel
StepHypRef Expression
1 eqid 2801 . . 3 ([Q]‘𝐴) = ([Q]‘𝐴)
2 nqerf 10345 . . . . 5 [Q]:(N × N)⟶Q
3 ffn 6491 . . . . 5 ([Q]:(N × N)⟶Q → [Q] Fn (N × N))
42, 3ax-mp 5 . . . 4 [Q] Fn (N × N)
5 fnbrfvb 6697 . . . 4 (([Q] Fn (N × N) ∧ 𝐴 ∈ (N × N)) → (([Q]‘𝐴) = ([Q]‘𝐴) ↔ 𝐴[Q]([Q]‘𝐴)))
64, 5mpan 689 . . 3 (𝐴 ∈ (N × N) → (([Q]‘𝐴) = ([Q]‘𝐴) ↔ 𝐴[Q]([Q]‘𝐴)))
71, 6mpbii 236 . 2 (𝐴 ∈ (N × N) → 𝐴[Q]([Q]‘𝐴))
8 df-erq 10328 . . . 4 [Q] = ( ~Q ∩ ((N × N) × Q))
9 inss1 4158 . . . 4 ( ~Q ∩ ((N × N) × Q)) ⊆ ~Q
108, 9eqsstri 3952 . . 3 [Q] ⊆ ~Q
1110ssbri 5078 . 2 (𝐴[Q]([Q]‘𝐴) → 𝐴 ~Q ([Q]‘𝐴))
127, 11syl 17 1 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2112   ∩ cin 3883   class class class wbr 5033   × cxp 5521   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  Ncnpi 10259   ~Q ceq 10266  Qcnq 10267  [Q]cerq 10269 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-omul 8094  df-er 8276  df-ni 10287  df-mi 10289  df-lti 10290  df-enq 10326  df-nq 10327  df-erq 10328  df-1nq 10331 This theorem is referenced by:  nqereq  10350  adderpq  10371  mulerpq  10372  lterpq  10385
 Copyright terms: Public domain W3C validator