![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nqerrel | Structured version Visualization version GIF version |
Description: Any member of (N × N) relates to the representative of its equivalence class. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqerrel | ⊢ (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ ([Q]‘𝐴) = ([Q]‘𝐴) | |
2 | nqerf 10968 | . . . . 5 ⊢ [Q]:(N × N)⟶Q | |
3 | ffn 6737 | . . . . 5 ⊢ ([Q]:(N × N)⟶Q → [Q] Fn (N × N)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ [Q] Fn (N × N) |
5 | fnbrfvb 6960 | . . . 4 ⊢ (([Q] Fn (N × N) ∧ 𝐴 ∈ (N × N)) → (([Q]‘𝐴) = ([Q]‘𝐴) ↔ 𝐴[Q]([Q]‘𝐴))) | |
6 | 4, 5 | mpan 690 | . . 3 ⊢ (𝐴 ∈ (N × N) → (([Q]‘𝐴) = ([Q]‘𝐴) ↔ 𝐴[Q]([Q]‘𝐴))) |
7 | 1, 6 | mpbii 233 | . 2 ⊢ (𝐴 ∈ (N × N) → 𝐴[Q]([Q]‘𝐴)) |
8 | df-erq 10951 | . . . 4 ⊢ [Q] = ( ~Q ∩ ((N × N) × Q)) | |
9 | inss1 4245 | . . . 4 ⊢ ( ~Q ∩ ((N × N) × Q)) ⊆ ~Q | |
10 | 8, 9 | eqsstri 4030 | . . 3 ⊢ [Q] ⊆ ~Q |
11 | 10 | ssbri 5193 | . 2 ⊢ (𝐴[Q]([Q]‘𝐴) → 𝐴 ~Q ([Q]‘𝐴)) |
12 | 7, 11 | syl 17 | 1 ⊢ (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 class class class wbr 5148 × cxp 5687 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 Ncnpi 10882 ~Q ceq 10889 Qcnq 10890 [Q]cerq 10892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-omul 8510 df-er 8744 df-ni 10910 df-mi 10912 df-lti 10913 df-enq 10949 df-nq 10950 df-erq 10951 df-1nq 10954 |
This theorem is referenced by: nqereq 10973 adderpq 10994 mulerpq 10995 lterpq 11008 |
Copyright terms: Public domain | W3C validator |