MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerrel Structured version   Visualization version   GIF version

Theorem nqerrel 10963
Description: Any member of (N × N) relates to the representative of its equivalence class. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerrel (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))

Proof of Theorem nqerrel
StepHypRef Expression
1 eqid 2728 . . 3 ([Q]‘𝐴) = ([Q]‘𝐴)
2 nqerf 10961 . . . . 5 [Q]:(N × N)⟶Q
3 ffn 6727 . . . . 5 ([Q]:(N × N)⟶Q → [Q] Fn (N × N))
42, 3ax-mp 5 . . . 4 [Q] Fn (N × N)
5 fnbrfvb 6955 . . . 4 (([Q] Fn (N × N) ∧ 𝐴 ∈ (N × N)) → (([Q]‘𝐴) = ([Q]‘𝐴) ↔ 𝐴[Q]([Q]‘𝐴)))
64, 5mpan 688 . . 3 (𝐴 ∈ (N × N) → (([Q]‘𝐴) = ([Q]‘𝐴) ↔ 𝐴[Q]([Q]‘𝐴)))
71, 6mpbii 232 . 2 (𝐴 ∈ (N × N) → 𝐴[Q]([Q]‘𝐴))
8 df-erq 10944 . . . 4 [Q] = ( ~Q ∩ ((N × N) × Q))
9 inss1 4231 . . . 4 ( ~Q ∩ ((N × N) × Q)) ⊆ ~Q
108, 9eqsstri 4016 . . 3 [Q] ⊆ ~Q
1110ssbri 5197 . 2 (𝐴[Q]([Q]‘𝐴) → 𝐴 ~Q ([Q]‘𝐴))
127, 11syl 17 1 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  cin 3948   class class class wbr 5152   × cxp 5680   Fn wfn 6548  wf 6549  cfv 6553  Ncnpi 10875   ~Q ceq 10882  Qcnq 10883  [Q]cerq 10885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-omul 8498  df-er 8731  df-ni 10903  df-mi 10905  df-lti 10906  df-enq 10942  df-nq 10943  df-erq 10944  df-1nq 10947
This theorem is referenced by:  nqereq  10966  adderpq  10987  mulerpq  10988  lterpq  11001
  Copyright terms: Public domain W3C validator