MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerrel Structured version   Visualization version   GIF version

Theorem nqerrel 10892
Description: Any member of (N × N) relates to the representative of its equivalence class. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerrel (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))

Proof of Theorem nqerrel
StepHypRef Expression
1 eqid 2730 . . 3 ([Q]‘𝐴) = ([Q]‘𝐴)
2 nqerf 10890 . . . . 5 [Q]:(N × N)⟶Q
3 ffn 6691 . . . . 5 ([Q]:(N × N)⟶Q → [Q] Fn (N × N))
42, 3ax-mp 5 . . . 4 [Q] Fn (N × N)
5 fnbrfvb 6914 . . . 4 (([Q] Fn (N × N) ∧ 𝐴 ∈ (N × N)) → (([Q]‘𝐴) = ([Q]‘𝐴) ↔ 𝐴[Q]([Q]‘𝐴)))
64, 5mpan 690 . . 3 (𝐴 ∈ (N × N) → (([Q]‘𝐴) = ([Q]‘𝐴) ↔ 𝐴[Q]([Q]‘𝐴)))
71, 6mpbii 233 . 2 (𝐴 ∈ (N × N) → 𝐴[Q]([Q]‘𝐴))
8 df-erq 10873 . . . 4 [Q] = ( ~Q ∩ ((N × N) × Q))
9 inss1 4203 . . . 4 ( ~Q ∩ ((N × N) × Q)) ⊆ ~Q
108, 9eqsstri 3996 . . 3 [Q] ⊆ ~Q
1110ssbri 5155 . 2 (𝐴[Q]([Q]‘𝐴) → 𝐴 ~Q ([Q]‘𝐴))
127, 11syl 17 1 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cin 3916   class class class wbr 5110   × cxp 5639   Fn wfn 6509  wf 6510  cfv 6514  Ncnpi 10804   ~Q ceq 10811  Qcnq 10812  [Q]cerq 10814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ni 10832  df-mi 10834  df-lti 10835  df-enq 10871  df-nq 10872  df-erq 10873  df-1nq 10876
This theorem is referenced by:  nqereq  10895  adderpq  10916  mulerpq  10917  lterpq  10930
  Copyright terms: Public domain W3C validator