| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fthoppc | Structured version Visualization version GIF version | ||
| Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| fulloppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| fulloppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| fthoppc.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
| Ref | Expression |
|---|---|
| fthoppc | ⊢ (𝜑 → 𝐹(𝑂 Faith 𝑃)tpos 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppc.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 2 | fulloppc.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 3 | fthoppc.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
| 4 | fthfunc 17927 | . . . . 5 ⊢ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷) | |
| 5 | 4 | ssbri 5169 | . . . 4 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 7 | 1, 2, 6 | funcoppc 17893 | . 2 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) |
| 8 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | eqid 2736 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 10 | eqid 2736 | . . . . . 6 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 11 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Faith 𝐷)𝐺) |
| 12 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
| 13 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
| 14 | 8, 9, 10, 11, 12, 13 | fthf1 17937 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
| 15 | df-f1 6541 | . . . . . 6 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) ↔ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) ∧ Fun ◡(𝑦𝐺𝑥))) | |
| 16 | 15 | simprbi 496 | . . . . 5 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) → Fun ◡(𝑦𝐺𝑥)) |
| 17 | 14, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun ◡(𝑦𝐺𝑥)) |
| 18 | ovtpos 8245 | . . . . . 6 ⊢ (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥) | |
| 19 | 18 | cnveqi 5859 | . . . . 5 ⊢ ◡(𝑥tpos 𝐺𝑦) = ◡(𝑦𝐺𝑥) |
| 20 | 19 | funeqi 6562 | . . . 4 ⊢ (Fun ◡(𝑥tpos 𝐺𝑦) ↔ Fun ◡(𝑦𝐺𝑥)) |
| 21 | 17, 20 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun ◡(𝑥tpos 𝐺𝑦)) |
| 22 | 21 | ralrimivva 3188 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥tpos 𝐺𝑦)) |
| 23 | 1, 8 | oppcbas 17735 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 24 | 23 | isfth 17934 | . 2 ⊢ (𝐹(𝑂 Faith 𝑃)tpos 𝐺 ↔ (𝐹(𝑂 Func 𝑃)tpos 𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥tpos 𝐺𝑦))) |
| 25 | 7, 22, 24 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(𝑂 Faith 𝑃)tpos 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 class class class wbr 5124 ◡ccnv 5658 Fun wfun 6530 ⟶wf 6532 –1-1→wf1 6533 ‘cfv 6536 (class class class)co 7410 tpos ctpos 8229 Basecbs 17233 Hom chom 17287 oppCatcoppc 17728 Func cfunc 17872 Faith cfth 17923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-oppc 17729 df-func 17876 df-fth 17925 |
| This theorem is referenced by: ffthoppc 17944 fthepi 17948 |
| Copyright terms: Public domain | W3C validator |