MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthoppc Structured version   Visualization version   GIF version

Theorem fthoppc 17970
Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fulloppc.o 𝑂 = (oppCat‘𝐶)
fulloppc.p 𝑃 = (oppCat‘𝐷)
fthoppc.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
Assertion
Ref Expression
fthoppc (𝜑𝐹(𝑂 Faith 𝑃)tpos 𝐺)

Proof of Theorem fthoppc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fulloppc.o . . 3 𝑂 = (oppCat‘𝐶)
2 fulloppc.p . . 3 𝑃 = (oppCat‘𝐷)
3 fthoppc.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
4 fthfunc 17954 . . . . 5 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
54ssbri 5188 . . . 4 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
63, 5syl 17 . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
71, 2, 6funcoppc 17920 . 2 (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)
8 eqid 2737 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2737 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2737 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
113adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Faith 𝐷)𝐺)
12 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
13 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
148, 9, 10, 11, 12, 13fthf1 17964 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
15 df-f1 6566 . . . . . 6 ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)) ↔ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)) ∧ Fun (𝑦𝐺𝑥)))
1615simprbi 496 . . . . 5 ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)) → Fun (𝑦𝐺𝑥))
1714, 16syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun (𝑦𝐺𝑥))
18 ovtpos 8266 . . . . . 6 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
1918cnveqi 5885 . . . . 5 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
2019funeqi 6587 . . . 4 (Fun (𝑥tpos 𝐺𝑦) ↔ Fun (𝑦𝐺𝑥))
2117, 20sylibr 234 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun (𝑥tpos 𝐺𝑦))
2221ralrimivva 3202 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun (𝑥tpos 𝐺𝑦))
231, 8oppcbas 17761 . . 3 (Base‘𝐶) = (Base‘𝑂)
2423isfth 17961 . 2 (𝐹(𝑂 Faith 𝑃)tpos 𝐺 ↔ (𝐹(𝑂 Func 𝑃)tpos 𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun (𝑥tpos 𝐺𝑦)))
257, 22, 24sylanbrc 583 1 (𝜑𝐹(𝑂 Faith 𝑃)tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061   class class class wbr 5143  ccnv 5684  Fun wfun 6555  wf 6557  1-1wf1 6558  cfv 6561  (class class class)co 7431  tpos ctpos 8250  Basecbs 17247  Hom chom 17308  oppCatcoppc 17754   Func cfunc 17899   Faith cfth 17950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-hom 17321  df-cco 17322  df-cat 17711  df-cid 17712  df-oppc 17755  df-func 17903  df-fth 17952
This theorem is referenced by:  ffthoppc  17971  fthepi  17975
  Copyright terms: Public domain W3C validator