Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fthoppc | Structured version Visualization version GIF version |
Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
fulloppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
fulloppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
fthoppc.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
Ref | Expression |
---|---|
fthoppc | ⊢ (𝜑 → 𝐹(𝑂 Faith 𝑃)tpos 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fulloppc.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
2 | fulloppc.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐷) | |
3 | fthoppc.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
4 | fthfunc 17539 | . . . . 5 ⊢ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷) | |
5 | 4 | ssbri 5115 | . . . 4 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
7 | 1, 2, 6 | funcoppc 17506 | . 2 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) |
8 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
9 | eqid 2738 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
10 | eqid 2738 | . . . . . 6 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
11 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Faith 𝐷)𝐺) |
12 | simprr 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
13 | simprl 767 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
14 | 8, 9, 10, 11, 12, 13 | fthf1 17549 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
15 | df-f1 6423 | . . . . . 6 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) ↔ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) ∧ Fun ◡(𝑦𝐺𝑥))) | |
16 | 15 | simprbi 496 | . . . . 5 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) → Fun ◡(𝑦𝐺𝑥)) |
17 | 14, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun ◡(𝑦𝐺𝑥)) |
18 | ovtpos 8028 | . . . . . 6 ⊢ (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥) | |
19 | 18 | cnveqi 5772 | . . . . 5 ⊢ ◡(𝑥tpos 𝐺𝑦) = ◡(𝑦𝐺𝑥) |
20 | 19 | funeqi 6439 | . . . 4 ⊢ (Fun ◡(𝑥tpos 𝐺𝑦) ↔ Fun ◡(𝑦𝐺𝑥)) |
21 | 17, 20 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun ◡(𝑥tpos 𝐺𝑦)) |
22 | 21 | ralrimivva 3114 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥tpos 𝐺𝑦)) |
23 | 1, 8 | oppcbas 17345 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝑂) |
24 | 23 | isfth 17546 | . 2 ⊢ (𝐹(𝑂 Faith 𝑃)tpos 𝐺 ↔ (𝐹(𝑂 Func 𝑃)tpos 𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥tpos 𝐺𝑦))) |
25 | 7, 22, 24 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐹(𝑂 Faith 𝑃)tpos 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ◡ccnv 5579 Fun wfun 6412 ⟶wf 6414 –1-1→wf1 6415 ‘cfv 6418 (class class class)co 7255 tpos ctpos 8012 Basecbs 16840 Hom chom 16899 oppCatcoppc 17337 Func cfunc 17485 Faith cfth 17535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-hom 16912 df-cco 16913 df-cat 17294 df-cid 17295 df-oppc 17338 df-func 17489 df-fth 17537 |
This theorem is referenced by: ffthoppc 17556 fthepi 17560 |
Copyright terms: Public domain | W3C validator |