![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fthoppc | Structured version Visualization version GIF version |
Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
fulloppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
fulloppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
fthoppc.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
Ref | Expression |
---|---|
fthoppc | ⊢ (𝜑 → 𝐹(𝑂 Faith 𝑃)tpos 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fulloppc.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
2 | fulloppc.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐷) | |
3 | fthoppc.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
4 | fthfunc 17974 | . . . . 5 ⊢ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷) | |
5 | 4 | ssbri 5211 | . . . 4 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
7 | 1, 2, 6 | funcoppc 17939 | . 2 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) |
8 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
9 | eqid 2740 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
10 | eqid 2740 | . . . . . 6 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
11 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Faith 𝐷)𝐺) |
12 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
13 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
14 | 8, 9, 10, 11, 12, 13 | fthf1 17984 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
15 | df-f1 6578 | . . . . . 6 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) ↔ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) ∧ Fun ◡(𝑦𝐺𝑥))) | |
16 | 15 | simprbi 496 | . . . . 5 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) → Fun ◡(𝑦𝐺𝑥)) |
17 | 14, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun ◡(𝑦𝐺𝑥)) |
18 | ovtpos 8282 | . . . . . 6 ⊢ (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥) | |
19 | 18 | cnveqi 5899 | . . . . 5 ⊢ ◡(𝑥tpos 𝐺𝑦) = ◡(𝑦𝐺𝑥) |
20 | 19 | funeqi 6599 | . . . 4 ⊢ (Fun ◡(𝑥tpos 𝐺𝑦) ↔ Fun ◡(𝑦𝐺𝑥)) |
21 | 17, 20 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun ◡(𝑥tpos 𝐺𝑦)) |
22 | 21 | ralrimivva 3208 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥tpos 𝐺𝑦)) |
23 | 1, 8 | oppcbas 17777 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝑂) |
24 | 23 | isfth 17981 | . 2 ⊢ (𝐹(𝑂 Faith 𝑃)tpos 𝐺 ↔ (𝐹(𝑂 Func 𝑃)tpos 𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥tpos 𝐺𝑦))) |
25 | 7, 22, 24 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐹(𝑂 Faith 𝑃)tpos 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ◡ccnv 5699 Fun wfun 6567 ⟶wf 6569 –1-1→wf1 6570 ‘cfv 6573 (class class class)co 7448 tpos ctpos 8266 Basecbs 17258 Hom chom 17322 oppCatcoppc 17769 Func cfunc 17918 Faith cfth 17970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-hom 17335 df-cco 17336 df-cat 17726 df-cid 17727 df-oppc 17770 df-func 17922 df-fth 17972 |
This theorem is referenced by: ffthoppc 17991 fthepi 17995 |
Copyright terms: Public domain | W3C validator |