![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fthoppc | Structured version Visualization version GIF version |
Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
fulloppc.o | β’ π = (oppCatβπΆ) |
fulloppc.p | β’ π = (oppCatβπ·) |
fthoppc.f | β’ (π β πΉ(πΆ Faith π·)πΊ) |
Ref | Expression |
---|---|
fthoppc | β’ (π β πΉ(π Faith π)tpos πΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fulloppc.o | . . 3 β’ π = (oppCatβπΆ) | |
2 | fulloppc.p | . . 3 β’ π = (oppCatβπ·) | |
3 | fthoppc.f | . . . 4 β’ (π β πΉ(πΆ Faith π·)πΊ) | |
4 | fthfunc 17854 | . . . . 5 β’ (πΆ Faith π·) β (πΆ Func π·) | |
5 | 4 | ssbri 5192 | . . . 4 β’ (πΉ(πΆ Faith π·)πΊ β πΉ(πΆ Func π·)πΊ) |
6 | 3, 5 | syl 17 | . . 3 β’ (π β πΉ(πΆ Func π·)πΊ) |
7 | 1, 2, 6 | funcoppc 17821 | . 2 β’ (π β πΉ(π Func π)tpos πΊ) |
8 | eqid 2732 | . . . . . 6 β’ (BaseβπΆ) = (BaseβπΆ) | |
9 | eqid 2732 | . . . . . 6 β’ (Hom βπΆ) = (Hom βπΆ) | |
10 | eqid 2732 | . . . . . 6 β’ (Hom βπ·) = (Hom βπ·) | |
11 | 3 | adantr 481 | . . . . . 6 β’ ((π β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β πΉ(πΆ Faith π·)πΊ) |
12 | simprr 771 | . . . . . 6 β’ ((π β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β π¦ β (BaseβπΆ)) | |
13 | simprl 769 | . . . . . 6 β’ ((π β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β π₯ β (BaseβπΆ)) | |
14 | 8, 9, 10, 11, 12, 13 | fthf1 17864 | . . . . 5 β’ ((π β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β (π¦πΊπ₯):(π¦(Hom βπΆ)π₯)β1-1β((πΉβπ¦)(Hom βπ·)(πΉβπ₯))) |
15 | df-f1 6545 | . . . . . 6 β’ ((π¦πΊπ₯):(π¦(Hom βπΆ)π₯)β1-1β((πΉβπ¦)(Hom βπ·)(πΉβπ₯)) β ((π¦πΊπ₯):(π¦(Hom βπΆ)π₯)βΆ((πΉβπ¦)(Hom βπ·)(πΉβπ₯)) β§ Fun β‘(π¦πΊπ₯))) | |
16 | 15 | simprbi 497 | . . . . 5 β’ ((π¦πΊπ₯):(π¦(Hom βπΆ)π₯)β1-1β((πΉβπ¦)(Hom βπ·)(πΉβπ₯)) β Fun β‘(π¦πΊπ₯)) |
17 | 14, 16 | syl 17 | . . . 4 β’ ((π β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β Fun β‘(π¦πΊπ₯)) |
18 | ovtpos 8222 | . . . . . 6 β’ (π₯tpos πΊπ¦) = (π¦πΊπ₯) | |
19 | 18 | cnveqi 5872 | . . . . 5 β’ β‘(π₯tpos πΊπ¦) = β‘(π¦πΊπ₯) |
20 | 19 | funeqi 6566 | . . . 4 β’ (Fun β‘(π₯tpos πΊπ¦) β Fun β‘(π¦πΊπ₯)) |
21 | 17, 20 | sylibr 233 | . . 3 β’ ((π β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β Fun β‘(π₯tpos πΊπ¦)) |
22 | 21 | ralrimivva 3200 | . 2 β’ (π β βπ₯ β (BaseβπΆ)βπ¦ β (BaseβπΆ)Fun β‘(π₯tpos πΊπ¦)) |
23 | 1, 8 | oppcbas 17659 | . . 3 β’ (BaseβπΆ) = (Baseβπ) |
24 | 23 | isfth 17861 | . 2 β’ (πΉ(π Faith π)tpos πΊ β (πΉ(π Func π)tpos πΊ β§ βπ₯ β (BaseβπΆ)βπ¦ β (BaseβπΆ)Fun β‘(π₯tpos πΊπ¦))) |
25 | 7, 22, 24 | sylanbrc 583 | 1 β’ (π β πΉ(π Faith π)tpos πΊ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5147 β‘ccnv 5674 Fun wfun 6534 βΆwf 6536 β1-1βwf1 6537 βcfv 6540 (class class class)co 7405 tpos ctpos 8206 Basecbs 17140 Hom chom 17204 oppCatcoppc 17651 Func cfunc 17800 Faith cfth 17850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-hom 17217 df-cco 17218 df-cat 17608 df-cid 17609 df-oppc 17652 df-func 17804 df-fth 17852 |
This theorem is referenced by: ffthoppc 17871 fthepi 17875 |
Copyright terms: Public domain | W3C validator |