| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fthoppc | Structured version Visualization version GIF version | ||
| Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| fulloppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| fulloppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| fthoppc.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
| Ref | Expression |
|---|---|
| fthoppc | ⊢ (𝜑 → 𝐹(𝑂 Faith 𝑃)tpos 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppc.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 2 | fulloppc.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 3 | fthoppc.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
| 4 | fthfunc 17871 | . . . . 5 ⊢ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷) | |
| 5 | 4 | ssbri 5152 | . . . 4 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 7 | 1, 2, 6 | funcoppc 17837 | . 2 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) |
| 8 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | eqid 2729 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 11 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Faith 𝐷)𝐺) |
| 12 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
| 13 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
| 14 | 8, 9, 10, 11, 12, 13 | fthf1 17881 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
| 15 | df-f1 6516 | . . . . . 6 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) ↔ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) ∧ Fun ◡(𝑦𝐺𝑥))) | |
| 16 | 15 | simprbi 496 | . . . . 5 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) → Fun ◡(𝑦𝐺𝑥)) |
| 17 | 14, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun ◡(𝑦𝐺𝑥)) |
| 18 | ovtpos 8220 | . . . . . 6 ⊢ (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥) | |
| 19 | 18 | cnveqi 5838 | . . . . 5 ⊢ ◡(𝑥tpos 𝐺𝑦) = ◡(𝑦𝐺𝑥) |
| 20 | 19 | funeqi 6537 | . . . 4 ⊢ (Fun ◡(𝑥tpos 𝐺𝑦) ↔ Fun ◡(𝑦𝐺𝑥)) |
| 21 | 17, 20 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun ◡(𝑥tpos 𝐺𝑦)) |
| 22 | 21 | ralrimivva 3180 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥tpos 𝐺𝑦)) |
| 23 | 1, 8 | oppcbas 17679 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 24 | 23 | isfth 17878 | . 2 ⊢ (𝐹(𝑂 Faith 𝑃)tpos 𝐺 ↔ (𝐹(𝑂 Func 𝑃)tpos 𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥tpos 𝐺𝑦))) |
| 25 | 7, 22, 24 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(𝑂 Faith 𝑃)tpos 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ◡ccnv 5637 Fun wfun 6505 ⟶wf 6507 –1-1→wf1 6508 ‘cfv 6511 (class class class)co 7387 tpos ctpos 8204 Basecbs 17179 Hom chom 17231 oppCatcoppc 17672 Func cfunc 17816 Faith cfth 17867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-cat 17629 df-cid 17630 df-oppc 17673 df-func 17820 df-fth 17869 |
| This theorem is referenced by: ffthoppc 17888 fthepi 17892 fthoppf 49153 |
| Copyright terms: Public domain | W3C validator |