MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcisolem Structured version   Visualization version   GIF version

Theorem catcisolem 18127
Description: Lemma for catciso 18128. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
catciso.c 𝐶 = (CatCat‘𝑈)
catciso.b 𝐵 = (Base‘𝐶)
catciso.r 𝑅 = (Base‘𝑋)
catciso.s 𝑆 = (Base‘𝑌)
catciso.u (𝜑𝑈𝑉)
catciso.x (𝜑𝑋𝐵)
catciso.y (𝜑𝑌𝐵)
catcisolem.i 𝐼 = (Inv‘𝐶)
catcisolem.g 𝐻 = (𝑥𝑆, 𝑦𝑆((𝐹𝑥)𝐺(𝐹𝑦)))
catcisolem.1 (𝜑𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
catcisolem.2 (𝜑𝐹:𝑅1-1-onto𝑆)
Assertion
Ref Expression
catcisolem (𝜑 → ⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem catcisolem
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcisolem.2 . . . . . . 7 (𝜑𝐹:𝑅1-1-onto𝑆)
2 f1ococnv1 6857 . . . . . . 7 (𝐹:𝑅1-1-onto𝑆 → (𝐹𝐹) = ( I ↾ 𝑅))
31, 2syl 17 . . . . . 6 (𝜑 → (𝐹𝐹) = ( I ↾ 𝑅))
413ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹:𝑅1-1-onto𝑆)
5 f1of 6828 . . . . . . . . . . . . . 14 (𝐹:𝑅1-1-onto𝑆𝐹:𝑅𝑆)
64, 5syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹:𝑅𝑆)
7 simp2 1137 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝑢𝑅)
86, 7ffvelcdmd 7085 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹𝑢) ∈ 𝑆)
9 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝑣𝑅)
106, 9ffvelcdmd 7085 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹𝑣) ∈ 𝑆)
11 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → 𝑥 = (𝐹𝑢))
1211fveq2d 6890 . . . . . . . . . . . . . . 15 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → (𝐹𝑥) = (𝐹‘(𝐹𝑢)))
13 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → 𝑦 = (𝐹𝑣))
1413fveq2d 6890 . . . . . . . . . . . . . . 15 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → (𝐹𝑦) = (𝐹‘(𝐹𝑣)))
1512, 14oveq12d 7431 . . . . . . . . . . . . . 14 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
1615cnveqd 5866 . . . . . . . . . . . . 13 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
17 catcisolem.g . . . . . . . . . . . . 13 𝐻 = (𝑥𝑆, 𝑦𝑆((𝐹𝑥)𝐺(𝐹𝑦)))
18 ovex 7446 . . . . . . . . . . . . . 14 ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) ∈ V
1918cnvex 7929 . . . . . . . . . . . . 13 ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) ∈ V
2016, 17, 19ovmpoa 7570 . . . . . . . . . . . 12 (((𝐹𝑢) ∈ 𝑆 ∧ (𝐹𝑣) ∈ 𝑆) → ((𝐹𝑢)𝐻(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
218, 10, 20syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹𝑢)𝐻(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
22 f1ocnvfv1 7278 . . . . . . . . . . . . . 14 ((𝐹:𝑅1-1-onto𝑆𝑢𝑅) → (𝐹‘(𝐹𝑢)) = 𝑢)
234, 7, 22syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹‘(𝐹𝑢)) = 𝑢)
24 f1ocnvfv1 7278 . . . . . . . . . . . . . 14 ((𝐹:𝑅1-1-onto𝑆𝑣𝑅) → (𝐹‘(𝐹𝑣)) = 𝑣)
254, 9, 24syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹‘(𝐹𝑣)) = 𝑣)
2623, 25oveq12d 7431 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) = (𝑢𝐺𝑣))
2726cnveqd 5866 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) = (𝑢𝐺𝑣))
2821, 27eqtrd 2769 . . . . . . . . . 10 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹𝑢)𝐻(𝐹𝑣)) = (𝑢𝐺𝑣))
2928coeq1d 5852 . . . . . . . . 9 ((𝜑𝑢𝑅𝑣𝑅) → (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)) = ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)))
30 catciso.r . . . . . . . . . . 11 𝑅 = (Base‘𝑋)
31 eqid 2734 . . . . . . . . . . 11 (Hom ‘𝑋) = (Hom ‘𝑋)
32 eqid 2734 . . . . . . . . . . 11 (Hom ‘𝑌) = (Hom ‘𝑌)
33 catcisolem.1 . . . . . . . . . . . 12 (𝜑𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
34333ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
3530, 31, 32, 34, 7, 9ffthf1o 17938 . . . . . . . . . 10 ((𝜑𝑢𝑅𝑣𝑅) → (𝑢𝐺𝑣):(𝑢(Hom ‘𝑋)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑌)(𝐹𝑣)))
36 f1ococnv1 6857 . . . . . . . . . 10 ((𝑢𝐺𝑣):(𝑢(Hom ‘𝑋)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑌)(𝐹𝑣)) → ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3735, 36syl 17 . . . . . . . . 9 ((𝜑𝑢𝑅𝑣𝑅) → ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3829, 37eqtrd 2769 . . . . . . . 8 ((𝜑𝑢𝑅𝑣𝑅) → (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3938mpoeq3dva 7492 . . . . . . 7 (𝜑 → (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣))) = (𝑢𝑅, 𝑣𝑅 ↦ ( I ↾ (𝑢(Hom ‘𝑋)𝑣))))
40 fveq2 6886 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑋)‘𝑧) = ((Hom ‘𝑋)‘⟨𝑢, 𝑣⟩))
41 df-ov 7416 . . . . . . . . . 10 (𝑢(Hom ‘𝑋)𝑣) = ((Hom ‘𝑋)‘⟨𝑢, 𝑣⟩)
4240, 41eqtr4di 2787 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑋)‘𝑧) = (𝑢(Hom ‘𝑋)𝑣))
4342reseq2d 5977 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → ( I ↾ ((Hom ‘𝑋)‘𝑧)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
4443mpompt 7529 . . . . . . 7 (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧))) = (𝑢𝑅, 𝑣𝑅 ↦ ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
4539, 44eqtr4di 2787 . . . . . 6 (𝜑 → (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣))) = (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧))))
463, 45opeq12d 4861 . . . . 5 (𝜑 → ⟨(𝐹𝐹), (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)))⟩ = ⟨( I ↾ 𝑅), (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧)))⟩)
47 inss1 4217 . . . . . . . . 9 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Full 𝑌)
48 fullfunc 17925 . . . . . . . . 9 (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌)
4947, 48sstri 3973 . . . . . . . 8 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Func 𝑌)
5049ssbri 5168 . . . . . . 7 (𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺𝐹(𝑋 Func 𝑌)𝐺)
5133, 50syl 17 . . . . . 6 (𝜑𝐹(𝑋 Func 𝑌)𝐺)
52 catciso.s . . . . . . 7 𝑆 = (Base‘𝑌)
53 eqid 2734 . . . . . . 7 (Id‘𝑌) = (Id‘𝑌)
54 eqid 2734 . . . . . . 7 (Id‘𝑋) = (Id‘𝑋)
55 eqid 2734 . . . . . . 7 (comp‘𝑌) = (comp‘𝑌)
56 eqid 2734 . . . . . . 7 (comp‘𝑋) = (comp‘𝑋)
57 catciso.c . . . . . . . . . 10 𝐶 = (CatCat‘𝑈)
58 catciso.b . . . . . . . . . 10 𝐵 = (Base‘𝐶)
59 catciso.u . . . . . . . . . 10 (𝜑𝑈𝑉)
6057, 58, 59catcbas 18118 . . . . . . . . 9 (𝜑𝐵 = (𝑈 ∩ Cat))
61 inss2 4218 . . . . . . . . 9 (𝑈 ∩ Cat) ⊆ Cat
6260, 61eqsstrdi 4008 . . . . . . . 8 (𝜑𝐵 ⊆ Cat)
63 catciso.y . . . . . . . 8 (𝜑𝑌𝐵)
6462, 63sseldd 3964 . . . . . . 7 (𝜑𝑌 ∈ Cat)
65 catciso.x . . . . . . . 8 (𝜑𝑋𝐵)
6662, 65sseldd 3964 . . . . . . 7 (𝜑𝑋 ∈ Cat)
67 f1ocnv 6840 . . . . . . . 8 (𝐹:𝑅1-1-onto𝑆𝐹:𝑆1-1-onto𝑅)
68 f1of 6828 . . . . . . . 8 (𝐹:𝑆1-1-onto𝑅𝐹:𝑆𝑅)
691, 67, 683syl 18 . . . . . . 7 (𝜑𝐹:𝑆𝑅)
70 ovex 7446 . . . . . . . . . 10 ((𝐹𝑥)𝐺(𝐹𝑦)) ∈ V
7170cnvex 7929 . . . . . . . . 9 ((𝐹𝑥)𝐺(𝐹𝑦)) ∈ V
7217, 71fnmpoi 8077 . . . . . . . 8 𝐻 Fn (𝑆 × 𝑆)
7372a1i 11 . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
7433adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
7569ffvelcdmda 7084 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → (𝐹𝑢) ∈ 𝑅)
7675adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹𝑢) ∈ 𝑅)
7769ffvelcdmda 7084 . . . . . . . . . . 11 ((𝜑𝑣𝑆) → (𝐹𝑣) ∈ 𝑅)
7877adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹𝑣) ∈ 𝑅)
7930, 31, 32, 74, 76, 78ffthf1o 17938 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
80 f1ocnv 6840 . . . . . . . . 9 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
81 f1of 6828 . . . . . . . . 9 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
8279, 80, 813syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
83 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
8483fveq2d 6890 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐹𝑥) = (𝐹𝑢))
85 simpr 484 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
8685fveq2d 6890 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐹𝑦) = (𝐹𝑣))
8784, 86oveq12d 7431 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑣)))
8887cnveqd 5866 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑣)))
89 ovex 7446 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑣)) ∈ V
9089cnvex 7929 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑣)) ∈ V
9188, 17, 90ovmpoa 7570 . . . . . . . . . 10 ((𝑢𝑆𝑣𝑆) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
9291adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
931adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝐹:𝑅1-1-onto𝑆)
94 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝑢𝑆)
95 f1ocnvfv2 7279 . . . . . . . . . . . 12 ((𝐹:𝑅1-1-onto𝑆𝑢𝑆) → (𝐹‘(𝐹𝑢)) = 𝑢)
9693, 94, 95syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹‘(𝐹𝑢)) = 𝑢)
97 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝑣𝑆)
98 f1ocnvfv2 7279 . . . . . . . . . . . 12 ((𝐹:𝑅1-1-onto𝑆𝑣𝑆) → (𝐹‘(𝐹𝑣)) = 𝑣)
9993, 97, 98syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹‘(𝐹𝑣)) = 𝑣)
10096, 99oveq12d 7431 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
101100eqcomd 2740 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢(Hom ‘𝑌)𝑣) = ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
10292, 101feq12d 6704 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝑢𝐻𝑣):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))))
10382, 102mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝐻𝑣):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
104 simpr 484 . . . . . . . . . 10 ((𝜑𝑢𝑆) → 𝑢𝑆)
105 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑢) → 𝑥 = 𝑢)
106105fveq2d 6890 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝐹𝑥) = (𝐹𝑢))
107 simpr 484 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑢) → 𝑦 = 𝑢)
108107fveq2d 6890 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝐹𝑦) = (𝐹𝑢))
109106, 108oveq12d 7431 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑢)))
110109cnveqd 5866 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑢)))
111 ovex 7446 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑢)) ∈ V
112111cnvex 7929 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑢)) ∈ V
113110, 17, 112ovmpoa 7570 . . . . . . . . . 10 ((𝑢𝑆𝑢𝑆) → (𝑢𝐻𝑢) = ((𝐹𝑢)𝐺(𝐹𝑢)))
114104, 104, 113syl2anc 584 . . . . . . . . 9 ((𝜑𝑢𝑆) → (𝑢𝐻𝑢) = ((𝐹𝑢)𝐺(𝐹𝑢)))
115114fveq1d 6888 . . . . . . . 8 ((𝜑𝑢𝑆) → ((𝑢𝐻𝑢)‘((Id‘𝑌)‘𝑢)) = (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)))
11651adantr 480 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝐹(𝑋 Func 𝑌)𝐺)
11730, 54, 53, 116, 75funcid 17887 . . . . . . . . . 10 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘(𝐹‘(𝐹𝑢))))
1181, 95sylan 580 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → (𝐹‘(𝐹𝑢)) = 𝑢)
119118fveq2d 6890 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((Id‘𝑌)‘(𝐹‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢))
120117, 119eqtrd 2769 . . . . . . . . 9 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢))
12133adantr 480 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
12230, 31, 32, 121, 75, 75ffthf1o 17938 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((𝐹𝑢)𝐺(𝐹𝑢)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑢))))
12366adantr 480 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝑋 ∈ Cat)
12430, 31, 54, 123, 75catidcl 17697 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((Id‘𝑋)‘(𝐹𝑢)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢)))
125 f1ocnvfv 7280 . . . . . . . . . 10 ((((𝐹𝑢)𝐺(𝐹𝑢)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑢))) ∧ ((Id‘𝑋)‘(𝐹𝑢)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))) → ((((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢))))
126122, 124, 125syl2anc 584 . . . . . . . . 9 ((𝜑𝑢𝑆) → ((((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢))))
127120, 126mpd 15 . . . . . . . 8 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢)))
128115, 127eqtrd 2769 . . . . . . 7 ((𝜑𝑢𝑆) → ((𝑢𝐻𝑢)‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢)))
129513ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹(𝑋 Func 𝑌)𝐺)
130693ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹:𝑆𝑅)
131 simp21 1206 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑢𝑆)
132130, 131ffvelcdmd 7085 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑢) ∈ 𝑅)
133 simp22 1207 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑣𝑆)
134130, 133ffvelcdmd 7085 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑣) ∈ 𝑅)
135 simp23 1208 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑧𝑆)
136130, 135ffvelcdmd 7085 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑧) ∈ 𝑅)
137333ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
13830, 31, 32, 137, 132, 134ffthf1o 17938 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
13913ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹:𝑅1-1-onto𝑆)
140139, 131, 95syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑢)) = 𝑢)
141139, 133, 98syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑣)) = 𝑣)
142140, 141oveq12d 7431 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
143142f1oeq3d 6825 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣)))
144138, 143mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣))
145 f1ocnv 6840 . . . . . . . . . . . . 13 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
146 f1of 6828 . . . . . . . . . . . . 13 (((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
147144, 145, 1463syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
148 simp3l 1201 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣))
149147, 148ffvelcdmd 7085 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
15030, 31, 32, 137, 134, 136ffthf1o 17938 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))))
151 f1ocnvfv2 7279 . . . . . . . . . . . . . . . . 17 ((𝐹:𝑅1-1-onto𝑆𝑧𝑆) → (𝐹‘(𝐹𝑧)) = 𝑧)
152139, 135, 151syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑧)) = 𝑧)
153141, 152oveq12d 7431 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) = (𝑣(Hom ‘𝑌)𝑧))
154153f1oeq3d 6825 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) ↔ ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧)))
155150, 154mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧))
156 f1ocnv 6840 . . . . . . . . . . . . 13 (((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)–1-1-onto→((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
157 f1of 6828 . . . . . . . . . . . . 13 (((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)–1-1-onto→((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)⟶((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
158155, 156, 1573syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)⟶((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
159 simp3r 1202 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))
160158, 159ffvelcdmd 7085 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔) ∈ ((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
16130, 31, 56, 55, 129, 132, 134, 136, 149, 160funcco 17888 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))(⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧)))(((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
162140, 141opeq12d 4861 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩ = ⟨𝑢, 𝑣⟩)
163162, 152oveq12d 7431 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧))) = (⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧))
164 f1ocnvfv2 7279 . . . . . . . . . . . 12 ((((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧)) → (((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)) = 𝑔)
165155, 159, 164syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)) = 𝑔)
166 f1ocnvfv2 7279 . . . . . . . . . . . 12 ((((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) ∧ 𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣)) → (((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) = 𝑓)
167144, 148, 166syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) = 𝑓)
168163, 165, 167oveq123d 7434 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))(⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧)))(((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓))
169161, 168eqtrd 2769 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓))
17030, 31, 32, 137, 132, 136ffthf1o 17938 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))))
171140, 152oveq12d 7431 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) = (𝑢(Hom ‘𝑌)𝑧))
172171f1oeq3d 6825 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) ↔ ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧)))
173170, 172mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧))
174663ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑋 ∈ Cat)
17530, 31, 56, 174, 132, 134, 136, 149, 160catcocl 17700 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧)))
176 f1ocnvfv 7280 . . . . . . . . . 10 ((((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧) ∧ ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))) → ((((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
177173, 175, 176syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
178169, 177mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)))
179 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑧) → 𝑥 = 𝑢)
180179fveq2d 6890 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑧) → (𝐹𝑥) = (𝐹𝑢))
181 simpr 484 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑧) → 𝑦 = 𝑧)
182181fveq2d 6890 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑧) → (𝐹𝑦) = (𝐹𝑧))
183180, 182oveq12d 7431 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑧)))
184183cnveqd 5866 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑧)))
185 ovex 7446 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑧)) ∈ V
186185cnvex 7929 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑧)) ∈ V
187184, 17, 186ovmpoa 7570 . . . . . . . . . 10 ((𝑢𝑆𝑧𝑆) → (𝑢𝐻𝑧) = ((𝐹𝑢)𝐺(𝐹𝑧)))
188131, 135, 187syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑢𝐻𝑧) = ((𝐹𝑢)𝐺(𝐹𝑧)))
189188fveq1d 6888 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑧)‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)))
190 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑣𝑦 = 𝑧) → 𝑥 = 𝑣)
191190fveq2d 6890 . . . . . . . . . . . . . 14 ((𝑥 = 𝑣𝑦 = 𝑧) → (𝐹𝑥) = (𝐹𝑣))
192 simpr 484 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑣𝑦 = 𝑧) → 𝑦 = 𝑧)
193192fveq2d 6890 . . . . . . . . . . . . . 14 ((𝑥 = 𝑣𝑦 = 𝑧) → (𝐹𝑦) = (𝐹𝑧))
194191, 193oveq12d 7431 . . . . . . . . . . . . 13 ((𝑥 = 𝑣𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑣)𝐺(𝐹𝑧)))
195194cnveqd 5866 . . . . . . . . . . . 12 ((𝑥 = 𝑣𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑣)𝐺(𝐹𝑧)))
196 ovex 7446 . . . . . . . . . . . . 13 ((𝐹𝑣)𝐺(𝐹𝑧)) ∈ V
197196cnvex 7929 . . . . . . . . . . . 12 ((𝐹𝑣)𝐺(𝐹𝑧)) ∈ V
198195, 17, 197ovmpoa 7570 . . . . . . . . . . 11 ((𝑣𝑆𝑧𝑆) → (𝑣𝐻𝑧) = ((𝐹𝑣)𝐺(𝐹𝑧)))
199133, 135, 198syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑣𝐻𝑧) = ((𝐹𝑣)𝐺(𝐹𝑧)))
200199fveq1d 6888 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑣𝐻𝑧)‘𝑔) = (((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))
201131, 133, 91syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
202201fveq1d 6888 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑣)‘𝑓) = (((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))
203200, 202oveq12d 7431 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝑣𝐻𝑧)‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))((𝑢𝐻𝑣)‘𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)))
204178, 189, 2033eqtr4d 2779 . . . . . . 7 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑧)‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = (((𝑣𝐻𝑧)‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))((𝑢𝐻𝑣)‘𝑓)))
20552, 30, 32, 31, 53, 54, 55, 56, 64, 66, 69, 73, 103, 128, 204isfuncd 17882 . . . . . 6 (𝜑𝐹(𝑌 Func 𝑋)𝐻)
20630, 51, 205cofuval2 17904 . . . . 5 (𝜑 → (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐹𝐹), (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)))⟩)
207 eqid 2734 . . . . . 6 (idfunc𝑋) = (idfunc𝑋)
208207, 30, 66, 31idfuval 17893 . . . . 5 (𝜑 → (idfunc𝑋) = ⟨( I ↾ 𝑅), (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧)))⟩)
20946, 206, 2083eqtr4d 2779 . . . 4 (𝜑 → (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩) = (idfunc𝑋))
210 eqid 2734 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
211 df-br 5124 . . . . . 6 (𝐹(𝑋 Func 𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋 Func 𝑌))
21251, 211sylib 218 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋 Func 𝑌))
213 df-br 5124 . . . . . 6 (𝐹(𝑌 Func 𝑋)𝐻 ↔ ⟨𝐹, 𝐻⟩ ∈ (𝑌 Func 𝑋))
214205, 213sylib 218 . . . . 5 (𝜑 → ⟨𝐹, 𝐻⟩ ∈ (𝑌 Func 𝑋))
21557, 58, 59, 210, 65, 63, 65, 212, 214catcco 18122 . . . 4 (𝜑 → (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩))
216 eqid 2734 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
21757, 58, 216, 207, 59, 65catcid 18124 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) = (idfunc𝑋))
218209, 215, 2173eqtr4d 2779 . . 3 (𝜑 → (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = ((Id‘𝐶)‘𝑋))
219 eqid 2734 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
220 eqid 2734 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
22157catccat 18125 . . . . 5 (𝑈𝑉𝐶 ∈ Cat)
22259, 221syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
22357, 58, 59, 219, 65, 63catchom 18120 . . . . 5 (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 Func 𝑌))
224212, 223eleqtrrd 2836 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋(Hom ‘𝐶)𝑌))
22557, 58, 59, 219, 63, 65catchom 18120 . . . . 5 (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 Func 𝑋))
226214, 225eleqtrrd 2836 . . . 4 (𝜑 → ⟨𝐹, 𝐻⟩ ∈ (𝑌(Hom ‘𝐶)𝑋))
22758, 219, 210, 216, 220, 222, 65, 63, 224, 226issect2 17770 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩ ↔ (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = ((Id‘𝐶)‘𝑋)))
228218, 227mpbird 257 . 2 (𝜑 → ⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩)
229 f1ococnv2 6855 . . . . . . 7 (𝐹:𝑅1-1-onto𝑆 → (𝐹𝐹) = ( I ↾ 𝑆))
2301, 229syl 17 . . . . . 6 (𝜑 → (𝐹𝐹) = ( I ↾ 𝑆))
231913adant1 1130 . . . . . . . . . 10 ((𝜑𝑢𝑆𝑣𝑆) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
232231coeq2d 5853 . . . . . . . . 9 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)) = (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))))
233333ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
234753adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → (𝐹𝑢) ∈ 𝑅)
235773adant2 1131 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → (𝐹𝑣) ∈ 𝑅)
23630, 31, 32, 233, 234, 235ffthf1o 17938 . . . . . . . . . . 11 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
2371003impb 1114 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
238237f1oeq3d 6825 . . . . . . . . . . 11 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣)))
239236, 238mpbid 232 . . . . . . . . . 10 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣))
240 f1ococnv2 6855 . . . . . . . . . 10 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
241239, 240syl 17 . . . . . . . . 9 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
242232, 241eqtrd 2769 . . . . . . . 8 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
243242mpoeq3dva 7492 . . . . . . 7 (𝜑 → (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣))) = (𝑢𝑆, 𝑣𝑆 ↦ ( I ↾ (𝑢(Hom ‘𝑌)𝑣))))
244 fveq2 6886 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑌)‘𝑧) = ((Hom ‘𝑌)‘⟨𝑢, 𝑣⟩))
245 df-ov 7416 . . . . . . . . . 10 (𝑢(Hom ‘𝑌)𝑣) = ((Hom ‘𝑌)‘⟨𝑢, 𝑣⟩)
246244, 245eqtr4di 2787 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑌)‘𝑧) = (𝑢(Hom ‘𝑌)𝑣))
247246reseq2d 5977 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → ( I ↾ ((Hom ‘𝑌)‘𝑧)) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
248247mpompt 7529 . . . . . . 7 (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧))) = (𝑢𝑆, 𝑣𝑆 ↦ ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
249243, 248eqtr4di 2787 . . . . . 6 (𝜑 → (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣))) = (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧))))
250230, 249opeq12d 4861 . . . . 5 (𝜑 → ⟨(𝐹𝐹), (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)))⟩ = ⟨( I ↾ 𝑆), (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧)))⟩)
25152, 205, 51cofuval2 17904 . . . . 5 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩) = ⟨(𝐹𝐹), (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)))⟩)
252 eqid 2734 . . . . . 6 (idfunc𝑌) = (idfunc𝑌)
253252, 52, 64, 32idfuval 17893 . . . . 5 (𝜑 → (idfunc𝑌) = ⟨( I ↾ 𝑆), (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧)))⟩)
254250, 251, 2533eqtr4d 2779 . . . 4 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩) = (idfunc𝑌))
25557, 58, 59, 210, 63, 65, 63, 214, 212catcco 18122 . . . 4 (𝜑 → (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩))
25657, 58, 216, 252, 59, 63catcid 18124 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑌) = (idfunc𝑌))
257254, 255, 2563eqtr4d 2779 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = ((Id‘𝐶)‘𝑌))
25858, 219, 210, 216, 220, 222, 63, 65, 226, 224issect2 17770 . . 3 (𝜑 → (⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩ ↔ (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = ((Id‘𝐶)‘𝑌)))
259257, 258mpbird 257 . 2 (𝜑 → ⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩)
260 catcisolem.i . . 3 𝐼 = (Inv‘𝐶)
26158, 260, 222, 65, 63, 220isinv 17776 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩ ↔ (⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩ ∧ ⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩)))
262228, 259, 261mpbir2and 713 1 (𝜑 → ⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cin 3930  cop 4612   class class class wbr 5123  cmpt 5205   I cid 5557   × cxp 5663  ccnv 5664  cres 5667  ccom 5669   Fn wfn 6536  wf 6537  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  cmpo 7415  Basecbs 17230  Hom chom 17285  compcco 17286  Catccat 17679  Idccid 17680  Sectcsect 17760  Invcinv 17761   Func cfunc 17871  idfunccidfu 17872  func ccofu 17873   Full cful 17921   Faith cfth 17922  CatCatccatc 18115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-cat 17683  df-cid 17684  df-sect 17763  df-inv 17764  df-func 17875  df-idfu 17876  df-cofu 17877  df-full 17923  df-fth 17924  df-catc 18116
This theorem is referenced by:  catciso  18128
  Copyright terms: Public domain W3C validator