MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcisolem Structured version   Visualization version   GIF version

Theorem catcisolem 18163
Description: Lemma for catciso 18164. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
catciso.c 𝐶 = (CatCat‘𝑈)
catciso.b 𝐵 = (Base‘𝐶)
catciso.r 𝑅 = (Base‘𝑋)
catciso.s 𝑆 = (Base‘𝑌)
catciso.u (𝜑𝑈𝑉)
catciso.x (𝜑𝑋𝐵)
catciso.y (𝜑𝑌𝐵)
catcisolem.i 𝐼 = (Inv‘𝐶)
catcisolem.g 𝐻 = (𝑥𝑆, 𝑦𝑆((𝐹𝑥)𝐺(𝐹𝑦)))
catcisolem.1 (𝜑𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
catcisolem.2 (𝜑𝐹:𝑅1-1-onto𝑆)
Assertion
Ref Expression
catcisolem (𝜑 → ⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem catcisolem
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcisolem.2 . . . . . . 7 (𝜑𝐹:𝑅1-1-onto𝑆)
2 f1ococnv1 6877 . . . . . . 7 (𝐹:𝑅1-1-onto𝑆 → (𝐹𝐹) = ( I ↾ 𝑅))
31, 2syl 17 . . . . . 6 (𝜑 → (𝐹𝐹) = ( I ↾ 𝑅))
413ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹:𝑅1-1-onto𝑆)
5 f1of 6848 . . . . . . . . . . . . . 14 (𝐹:𝑅1-1-onto𝑆𝐹:𝑅𝑆)
64, 5syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹:𝑅𝑆)
7 simp2 1136 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝑢𝑅)
86, 7ffvelcdmd 7104 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹𝑢) ∈ 𝑆)
9 simp3 1137 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝑣𝑅)
106, 9ffvelcdmd 7104 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹𝑣) ∈ 𝑆)
11 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → 𝑥 = (𝐹𝑢))
1211fveq2d 6910 . . . . . . . . . . . . . . 15 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → (𝐹𝑥) = (𝐹‘(𝐹𝑢)))
13 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → 𝑦 = (𝐹𝑣))
1413fveq2d 6910 . . . . . . . . . . . . . . 15 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → (𝐹𝑦) = (𝐹‘(𝐹𝑣)))
1512, 14oveq12d 7448 . . . . . . . . . . . . . 14 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
1615cnveqd 5888 . . . . . . . . . . . . 13 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
17 catcisolem.g . . . . . . . . . . . . 13 𝐻 = (𝑥𝑆, 𝑦𝑆((𝐹𝑥)𝐺(𝐹𝑦)))
18 ovex 7463 . . . . . . . . . . . . . 14 ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) ∈ V
1918cnvex 7947 . . . . . . . . . . . . 13 ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) ∈ V
2016, 17, 19ovmpoa 7587 . . . . . . . . . . . 12 (((𝐹𝑢) ∈ 𝑆 ∧ (𝐹𝑣) ∈ 𝑆) → ((𝐹𝑢)𝐻(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
218, 10, 20syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹𝑢)𝐻(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
22 f1ocnvfv1 7295 . . . . . . . . . . . . . 14 ((𝐹:𝑅1-1-onto𝑆𝑢𝑅) → (𝐹‘(𝐹𝑢)) = 𝑢)
234, 7, 22syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹‘(𝐹𝑢)) = 𝑢)
24 f1ocnvfv1 7295 . . . . . . . . . . . . . 14 ((𝐹:𝑅1-1-onto𝑆𝑣𝑅) → (𝐹‘(𝐹𝑣)) = 𝑣)
254, 9, 24syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹‘(𝐹𝑣)) = 𝑣)
2623, 25oveq12d 7448 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) = (𝑢𝐺𝑣))
2726cnveqd 5888 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) = (𝑢𝐺𝑣))
2821, 27eqtrd 2774 . . . . . . . . . 10 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹𝑢)𝐻(𝐹𝑣)) = (𝑢𝐺𝑣))
2928coeq1d 5874 . . . . . . . . 9 ((𝜑𝑢𝑅𝑣𝑅) → (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)) = ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)))
30 catciso.r . . . . . . . . . . 11 𝑅 = (Base‘𝑋)
31 eqid 2734 . . . . . . . . . . 11 (Hom ‘𝑋) = (Hom ‘𝑋)
32 eqid 2734 . . . . . . . . . . 11 (Hom ‘𝑌) = (Hom ‘𝑌)
33 catcisolem.1 . . . . . . . . . . . 12 (𝜑𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
34333ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
3530, 31, 32, 34, 7, 9ffthf1o 17972 . . . . . . . . . 10 ((𝜑𝑢𝑅𝑣𝑅) → (𝑢𝐺𝑣):(𝑢(Hom ‘𝑋)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑌)(𝐹𝑣)))
36 f1ococnv1 6877 . . . . . . . . . 10 ((𝑢𝐺𝑣):(𝑢(Hom ‘𝑋)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑌)(𝐹𝑣)) → ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3735, 36syl 17 . . . . . . . . 9 ((𝜑𝑢𝑅𝑣𝑅) → ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3829, 37eqtrd 2774 . . . . . . . 8 ((𝜑𝑢𝑅𝑣𝑅) → (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3938mpoeq3dva 7509 . . . . . . 7 (𝜑 → (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣))) = (𝑢𝑅, 𝑣𝑅 ↦ ( I ↾ (𝑢(Hom ‘𝑋)𝑣))))
40 fveq2 6906 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑋)‘𝑧) = ((Hom ‘𝑋)‘⟨𝑢, 𝑣⟩))
41 df-ov 7433 . . . . . . . . . 10 (𝑢(Hom ‘𝑋)𝑣) = ((Hom ‘𝑋)‘⟨𝑢, 𝑣⟩)
4240, 41eqtr4di 2792 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑋)‘𝑧) = (𝑢(Hom ‘𝑋)𝑣))
4342reseq2d 5999 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → ( I ↾ ((Hom ‘𝑋)‘𝑧)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
4443mpompt 7546 . . . . . . 7 (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧))) = (𝑢𝑅, 𝑣𝑅 ↦ ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
4539, 44eqtr4di 2792 . . . . . 6 (𝜑 → (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣))) = (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧))))
463, 45opeq12d 4885 . . . . 5 (𝜑 → ⟨(𝐹𝐹), (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)))⟩ = ⟨( I ↾ 𝑅), (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧)))⟩)
47 inss1 4244 . . . . . . . . 9 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Full 𝑌)
48 fullfunc 17959 . . . . . . . . 9 (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌)
4947, 48sstri 4004 . . . . . . . 8 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Func 𝑌)
5049ssbri 5192 . . . . . . 7 (𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺𝐹(𝑋 Func 𝑌)𝐺)
5133, 50syl 17 . . . . . 6 (𝜑𝐹(𝑋 Func 𝑌)𝐺)
52 catciso.s . . . . . . 7 𝑆 = (Base‘𝑌)
53 eqid 2734 . . . . . . 7 (Id‘𝑌) = (Id‘𝑌)
54 eqid 2734 . . . . . . 7 (Id‘𝑋) = (Id‘𝑋)
55 eqid 2734 . . . . . . 7 (comp‘𝑌) = (comp‘𝑌)
56 eqid 2734 . . . . . . 7 (comp‘𝑋) = (comp‘𝑋)
57 catciso.c . . . . . . . . . 10 𝐶 = (CatCat‘𝑈)
58 catciso.b . . . . . . . . . 10 𝐵 = (Base‘𝐶)
59 catciso.u . . . . . . . . . 10 (𝜑𝑈𝑉)
6057, 58, 59catcbas 18154 . . . . . . . . 9 (𝜑𝐵 = (𝑈 ∩ Cat))
61 inss2 4245 . . . . . . . . 9 (𝑈 ∩ Cat) ⊆ Cat
6260, 61eqsstrdi 4049 . . . . . . . 8 (𝜑𝐵 ⊆ Cat)
63 catciso.y . . . . . . . 8 (𝜑𝑌𝐵)
6462, 63sseldd 3995 . . . . . . 7 (𝜑𝑌 ∈ Cat)
65 catciso.x . . . . . . . 8 (𝜑𝑋𝐵)
6662, 65sseldd 3995 . . . . . . 7 (𝜑𝑋 ∈ Cat)
67 f1ocnv 6860 . . . . . . . 8 (𝐹:𝑅1-1-onto𝑆𝐹:𝑆1-1-onto𝑅)
68 f1of 6848 . . . . . . . 8 (𝐹:𝑆1-1-onto𝑅𝐹:𝑆𝑅)
691, 67, 683syl 18 . . . . . . 7 (𝜑𝐹:𝑆𝑅)
70 ovex 7463 . . . . . . . . . 10 ((𝐹𝑥)𝐺(𝐹𝑦)) ∈ V
7170cnvex 7947 . . . . . . . . 9 ((𝐹𝑥)𝐺(𝐹𝑦)) ∈ V
7217, 71fnmpoi 8093 . . . . . . . 8 𝐻 Fn (𝑆 × 𝑆)
7372a1i 11 . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
7433adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
7569ffvelcdmda 7103 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → (𝐹𝑢) ∈ 𝑅)
7675adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹𝑢) ∈ 𝑅)
7769ffvelcdmda 7103 . . . . . . . . . . 11 ((𝜑𝑣𝑆) → (𝐹𝑣) ∈ 𝑅)
7877adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹𝑣) ∈ 𝑅)
7930, 31, 32, 74, 76, 78ffthf1o 17972 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
80 f1ocnv 6860 . . . . . . . . 9 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
81 f1of 6848 . . . . . . . . 9 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
8279, 80, 813syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
83 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
8483fveq2d 6910 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐹𝑥) = (𝐹𝑢))
85 simpr 484 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
8685fveq2d 6910 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐹𝑦) = (𝐹𝑣))
8784, 86oveq12d 7448 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑣)))
8887cnveqd 5888 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑣)))
89 ovex 7463 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑣)) ∈ V
9089cnvex 7947 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑣)) ∈ V
9188, 17, 90ovmpoa 7587 . . . . . . . . . 10 ((𝑢𝑆𝑣𝑆) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
9291adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
931adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝐹:𝑅1-1-onto𝑆)
94 simprl 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝑢𝑆)
95 f1ocnvfv2 7296 . . . . . . . . . . . 12 ((𝐹:𝑅1-1-onto𝑆𝑢𝑆) → (𝐹‘(𝐹𝑢)) = 𝑢)
9693, 94, 95syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹‘(𝐹𝑢)) = 𝑢)
97 simprr 773 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝑣𝑆)
98 f1ocnvfv2 7296 . . . . . . . . . . . 12 ((𝐹:𝑅1-1-onto𝑆𝑣𝑆) → (𝐹‘(𝐹𝑣)) = 𝑣)
9993, 97, 98syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹‘(𝐹𝑣)) = 𝑣)
10096, 99oveq12d 7448 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
101100eqcomd 2740 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢(Hom ‘𝑌)𝑣) = ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
10292, 101feq12d 6724 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝑢𝐻𝑣):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))))
10382, 102mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝐻𝑣):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
104 simpr 484 . . . . . . . . . 10 ((𝜑𝑢𝑆) → 𝑢𝑆)
105 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑢) → 𝑥 = 𝑢)
106105fveq2d 6910 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝐹𝑥) = (𝐹𝑢))
107 simpr 484 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑢) → 𝑦 = 𝑢)
108107fveq2d 6910 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝐹𝑦) = (𝐹𝑢))
109106, 108oveq12d 7448 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑢)))
110109cnveqd 5888 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑢)))
111 ovex 7463 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑢)) ∈ V
112111cnvex 7947 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑢)) ∈ V
113110, 17, 112ovmpoa 7587 . . . . . . . . . 10 ((𝑢𝑆𝑢𝑆) → (𝑢𝐻𝑢) = ((𝐹𝑢)𝐺(𝐹𝑢)))
114104, 104, 113syl2anc 584 . . . . . . . . 9 ((𝜑𝑢𝑆) → (𝑢𝐻𝑢) = ((𝐹𝑢)𝐺(𝐹𝑢)))
115114fveq1d 6908 . . . . . . . 8 ((𝜑𝑢𝑆) → ((𝑢𝐻𝑢)‘((Id‘𝑌)‘𝑢)) = (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)))
11651adantr 480 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝐹(𝑋 Func 𝑌)𝐺)
11730, 54, 53, 116, 75funcid 17920 . . . . . . . . . 10 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘(𝐹‘(𝐹𝑢))))
1181, 95sylan 580 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → (𝐹‘(𝐹𝑢)) = 𝑢)
119118fveq2d 6910 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((Id‘𝑌)‘(𝐹‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢))
120117, 119eqtrd 2774 . . . . . . . . 9 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢))
12133adantr 480 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
12230, 31, 32, 121, 75, 75ffthf1o 17972 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((𝐹𝑢)𝐺(𝐹𝑢)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑢))))
12366adantr 480 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝑋 ∈ Cat)
12430, 31, 54, 123, 75catidcl 17726 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((Id‘𝑋)‘(𝐹𝑢)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢)))
125 f1ocnvfv 7297 . . . . . . . . . 10 ((((𝐹𝑢)𝐺(𝐹𝑢)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑢))) ∧ ((Id‘𝑋)‘(𝐹𝑢)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))) → ((((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢))))
126122, 124, 125syl2anc 584 . . . . . . . . 9 ((𝜑𝑢𝑆) → ((((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢))))
127120, 126mpd 15 . . . . . . . 8 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢)))
128115, 127eqtrd 2774 . . . . . . 7 ((𝜑𝑢𝑆) → ((𝑢𝐻𝑢)‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢)))
129513ad2ant1 1132 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹(𝑋 Func 𝑌)𝐺)
130693ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹:𝑆𝑅)
131 simp21 1205 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑢𝑆)
132130, 131ffvelcdmd 7104 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑢) ∈ 𝑅)
133 simp22 1206 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑣𝑆)
134130, 133ffvelcdmd 7104 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑣) ∈ 𝑅)
135 simp23 1207 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑧𝑆)
136130, 135ffvelcdmd 7104 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑧) ∈ 𝑅)
137333ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
13830, 31, 32, 137, 132, 134ffthf1o 17972 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
13913ad2ant1 1132 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹:𝑅1-1-onto𝑆)
140139, 131, 95syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑢)) = 𝑢)
141139, 133, 98syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑣)) = 𝑣)
142140, 141oveq12d 7448 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
143142f1oeq3d 6845 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣)))
144138, 143mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣))
145 f1ocnv 6860 . . . . . . . . . . . . 13 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
146 f1of 6848 . . . . . . . . . . . . 13 (((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
147144, 145, 1463syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
148 simp3l 1200 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣))
149147, 148ffvelcdmd 7104 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
15030, 31, 32, 137, 134, 136ffthf1o 17972 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))))
151 f1ocnvfv2 7296 . . . . . . . . . . . . . . . . 17 ((𝐹:𝑅1-1-onto𝑆𝑧𝑆) → (𝐹‘(𝐹𝑧)) = 𝑧)
152139, 135, 151syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑧)) = 𝑧)
153141, 152oveq12d 7448 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) = (𝑣(Hom ‘𝑌)𝑧))
154153f1oeq3d 6845 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) ↔ ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧)))
155150, 154mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧))
156 f1ocnv 6860 . . . . . . . . . . . . 13 (((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)–1-1-onto→((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
157 f1of 6848 . . . . . . . . . . . . 13 (((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)–1-1-onto→((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)⟶((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
158155, 156, 1573syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)⟶((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
159 simp3r 1201 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))
160158, 159ffvelcdmd 7104 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔) ∈ ((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
16130, 31, 56, 55, 129, 132, 134, 136, 149, 160funcco 17921 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))(⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧)))(((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
162140, 141opeq12d 4885 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩ = ⟨𝑢, 𝑣⟩)
163162, 152oveq12d 7448 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧))) = (⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧))
164 f1ocnvfv2 7296 . . . . . . . . . . . 12 ((((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧)) → (((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)) = 𝑔)
165155, 159, 164syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)) = 𝑔)
166 f1ocnvfv2 7296 . . . . . . . . . . . 12 ((((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) ∧ 𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣)) → (((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) = 𝑓)
167144, 148, 166syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) = 𝑓)
168163, 165, 167oveq123d 7451 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))(⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧)))(((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓))
169161, 168eqtrd 2774 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓))
17030, 31, 32, 137, 132, 136ffthf1o 17972 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))))
171140, 152oveq12d 7448 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) = (𝑢(Hom ‘𝑌)𝑧))
172171f1oeq3d 6845 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) ↔ ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧)))
173170, 172mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧))
174663ad2ant1 1132 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑋 ∈ Cat)
17530, 31, 56, 174, 132, 134, 136, 149, 160catcocl 17729 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧)))
176 f1ocnvfv 7297 . . . . . . . . . 10 ((((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧) ∧ ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))) → ((((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
177173, 175, 176syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
178169, 177mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)))
179 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑧) → 𝑥 = 𝑢)
180179fveq2d 6910 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑧) → (𝐹𝑥) = (𝐹𝑢))
181 simpr 484 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑧) → 𝑦 = 𝑧)
182181fveq2d 6910 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑧) → (𝐹𝑦) = (𝐹𝑧))
183180, 182oveq12d 7448 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑧)))
184183cnveqd 5888 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑧)))
185 ovex 7463 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑧)) ∈ V
186185cnvex 7947 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑧)) ∈ V
187184, 17, 186ovmpoa 7587 . . . . . . . . . 10 ((𝑢𝑆𝑧𝑆) → (𝑢𝐻𝑧) = ((𝐹𝑢)𝐺(𝐹𝑧)))
188131, 135, 187syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑢𝐻𝑧) = ((𝐹𝑢)𝐺(𝐹𝑧)))
189188fveq1d 6908 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑧)‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)))
190 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑣𝑦 = 𝑧) → 𝑥 = 𝑣)
191190fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑥 = 𝑣𝑦 = 𝑧) → (𝐹𝑥) = (𝐹𝑣))
192 simpr 484 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑣𝑦 = 𝑧) → 𝑦 = 𝑧)
193192fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑥 = 𝑣𝑦 = 𝑧) → (𝐹𝑦) = (𝐹𝑧))
194191, 193oveq12d 7448 . . . . . . . . . . . . 13 ((𝑥 = 𝑣𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑣)𝐺(𝐹𝑧)))
195194cnveqd 5888 . . . . . . . . . . . 12 ((𝑥 = 𝑣𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑣)𝐺(𝐹𝑧)))
196 ovex 7463 . . . . . . . . . . . . 13 ((𝐹𝑣)𝐺(𝐹𝑧)) ∈ V
197196cnvex 7947 . . . . . . . . . . . 12 ((𝐹𝑣)𝐺(𝐹𝑧)) ∈ V
198195, 17, 197ovmpoa 7587 . . . . . . . . . . 11 ((𝑣𝑆𝑧𝑆) → (𝑣𝐻𝑧) = ((𝐹𝑣)𝐺(𝐹𝑧)))
199133, 135, 198syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑣𝐻𝑧) = ((𝐹𝑣)𝐺(𝐹𝑧)))
200199fveq1d 6908 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑣𝐻𝑧)‘𝑔) = (((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))
201131, 133, 91syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
202201fveq1d 6908 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑣)‘𝑓) = (((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))
203200, 202oveq12d 7448 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝑣𝐻𝑧)‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))((𝑢𝐻𝑣)‘𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)))
204178, 189, 2033eqtr4d 2784 . . . . . . 7 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑧)‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = (((𝑣𝐻𝑧)‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))((𝑢𝐻𝑣)‘𝑓)))
20552, 30, 32, 31, 53, 54, 55, 56, 64, 66, 69, 73, 103, 128, 204isfuncd 17915 . . . . . 6 (𝜑𝐹(𝑌 Func 𝑋)𝐻)
20630, 51, 205cofuval2 17937 . . . . 5 (𝜑 → (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐹𝐹), (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)))⟩)
207 eqid 2734 . . . . . 6 (idfunc𝑋) = (idfunc𝑋)
208207, 30, 66, 31idfuval 17926 . . . . 5 (𝜑 → (idfunc𝑋) = ⟨( I ↾ 𝑅), (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧)))⟩)
20946, 206, 2083eqtr4d 2784 . . . 4 (𝜑 → (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩) = (idfunc𝑋))
210 eqid 2734 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
211 df-br 5148 . . . . . 6 (𝐹(𝑋 Func 𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋 Func 𝑌))
21251, 211sylib 218 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋 Func 𝑌))
213 df-br 5148 . . . . . 6 (𝐹(𝑌 Func 𝑋)𝐻 ↔ ⟨𝐹, 𝐻⟩ ∈ (𝑌 Func 𝑋))
214205, 213sylib 218 . . . . 5 (𝜑 → ⟨𝐹, 𝐻⟩ ∈ (𝑌 Func 𝑋))
21557, 58, 59, 210, 65, 63, 65, 212, 214catcco 18158 . . . 4 (𝜑 → (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩))
216 eqid 2734 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
21757, 58, 216, 207, 59, 65catcid 18160 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) = (idfunc𝑋))
218209, 215, 2173eqtr4d 2784 . . 3 (𝜑 → (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = ((Id‘𝐶)‘𝑋))
219 eqid 2734 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
220 eqid 2734 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
22157catccat 18161 . . . . 5 (𝑈𝑉𝐶 ∈ Cat)
22259, 221syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
22357, 58, 59, 219, 65, 63catchom 18156 . . . . 5 (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 Func 𝑌))
224212, 223eleqtrrd 2841 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋(Hom ‘𝐶)𝑌))
22557, 58, 59, 219, 63, 65catchom 18156 . . . . 5 (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 Func 𝑋))
226214, 225eleqtrrd 2841 . . . 4 (𝜑 → ⟨𝐹, 𝐻⟩ ∈ (𝑌(Hom ‘𝐶)𝑋))
22758, 219, 210, 216, 220, 222, 65, 63, 224, 226issect2 17801 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩ ↔ (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = ((Id‘𝐶)‘𝑋)))
228218, 227mpbird 257 . 2 (𝜑 → ⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩)
229 f1ococnv2 6875 . . . . . . 7 (𝐹:𝑅1-1-onto𝑆 → (𝐹𝐹) = ( I ↾ 𝑆))
2301, 229syl 17 . . . . . 6 (𝜑 → (𝐹𝐹) = ( I ↾ 𝑆))
231913adant1 1129 . . . . . . . . . 10 ((𝜑𝑢𝑆𝑣𝑆) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
232231coeq2d 5875 . . . . . . . . 9 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)) = (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))))
233333ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
234753adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → (𝐹𝑢) ∈ 𝑅)
235773adant2 1130 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → (𝐹𝑣) ∈ 𝑅)
23630, 31, 32, 233, 234, 235ffthf1o 17972 . . . . . . . . . . 11 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
2371003impb 1114 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
238237f1oeq3d 6845 . . . . . . . . . . 11 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣)))
239236, 238mpbid 232 . . . . . . . . . 10 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣))
240 f1ococnv2 6875 . . . . . . . . . 10 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
241239, 240syl 17 . . . . . . . . 9 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
242232, 241eqtrd 2774 . . . . . . . 8 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
243242mpoeq3dva 7509 . . . . . . 7 (𝜑 → (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣))) = (𝑢𝑆, 𝑣𝑆 ↦ ( I ↾ (𝑢(Hom ‘𝑌)𝑣))))
244 fveq2 6906 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑌)‘𝑧) = ((Hom ‘𝑌)‘⟨𝑢, 𝑣⟩))
245 df-ov 7433 . . . . . . . . . 10 (𝑢(Hom ‘𝑌)𝑣) = ((Hom ‘𝑌)‘⟨𝑢, 𝑣⟩)
246244, 245eqtr4di 2792 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑌)‘𝑧) = (𝑢(Hom ‘𝑌)𝑣))
247246reseq2d 5999 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → ( I ↾ ((Hom ‘𝑌)‘𝑧)) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
248247mpompt 7546 . . . . . . 7 (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧))) = (𝑢𝑆, 𝑣𝑆 ↦ ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
249243, 248eqtr4di 2792 . . . . . 6 (𝜑 → (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣))) = (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧))))
250230, 249opeq12d 4885 . . . . 5 (𝜑 → ⟨(𝐹𝐹), (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)))⟩ = ⟨( I ↾ 𝑆), (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧)))⟩)
25152, 205, 51cofuval2 17937 . . . . 5 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩) = ⟨(𝐹𝐹), (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)))⟩)
252 eqid 2734 . . . . . 6 (idfunc𝑌) = (idfunc𝑌)
253252, 52, 64, 32idfuval 17926 . . . . 5 (𝜑 → (idfunc𝑌) = ⟨( I ↾ 𝑆), (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧)))⟩)
254250, 251, 2533eqtr4d 2784 . . . 4 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩) = (idfunc𝑌))
25557, 58, 59, 210, 63, 65, 63, 214, 212catcco 18158 . . . 4 (𝜑 → (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩))
25657, 58, 216, 252, 59, 63catcid 18160 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑌) = (idfunc𝑌))
257254, 255, 2563eqtr4d 2784 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = ((Id‘𝐶)‘𝑌))
25858, 219, 210, 216, 220, 222, 63, 65, 226, 224issect2 17801 . . 3 (𝜑 → (⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩ ↔ (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = ((Id‘𝐶)‘𝑌)))
259257, 258mpbird 257 . 2 (𝜑 → ⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩)
260 catcisolem.i . . 3 𝐼 = (Inv‘𝐶)
26158, 260, 222, 65, 63, 220isinv 17807 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩ ↔ (⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩ ∧ ⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩)))
262228, 259, 261mpbir2and 713 1 (𝜑 → ⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  cin 3961  cop 4636   class class class wbr 5147  cmpt 5230   I cid 5581   × cxp 5686  ccnv 5687  cres 5690  ccom 5692   Fn wfn 6557  wf 6558  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  cmpo 7432  Basecbs 17244  Hom chom 17308  compcco 17309  Catccat 17708  Idccid 17709  Sectcsect 17791  Invcinv 17792   Func cfunc 17904  idfunccidfu 17905  func ccofu 17906   Full cful 17955   Faith cfth 17956  CatCatccatc 18151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-hom 17321  df-cco 17322  df-cat 17712  df-cid 17713  df-sect 17794  df-inv 17795  df-func 17908  df-idfu 17909  df-cofu 17910  df-full 17957  df-fth 17958  df-catc 18152
This theorem is referenced by:  catciso  18164
  Copyright terms: Public domain W3C validator