MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcisolem Structured version   Visualization version   GIF version

Theorem catcisolem 17360
Description: Lemma for catciso 17361. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
catciso.c 𝐶 = (CatCat‘𝑈)
catciso.b 𝐵 = (Base‘𝐶)
catciso.r 𝑅 = (Base‘𝑋)
catciso.s 𝑆 = (Base‘𝑌)
catciso.u (𝜑𝑈𝑉)
catciso.x (𝜑𝑋𝐵)
catciso.y (𝜑𝑌𝐵)
catcisolem.i 𝐼 = (Inv‘𝐶)
catcisolem.g 𝐻 = (𝑥𝑆, 𝑦𝑆((𝐹𝑥)𝐺(𝐹𝑦)))
catcisolem.1 (𝜑𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
catcisolem.2 (𝜑𝐹:𝑅1-1-onto𝑆)
Assertion
Ref Expression
catcisolem (𝜑 → ⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem catcisolem
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcisolem.2 . . . . . . 7 (𝜑𝐹:𝑅1-1-onto𝑆)
2 f1ococnv1 6638 . . . . . . 7 (𝐹:𝑅1-1-onto𝑆 → (𝐹𝐹) = ( I ↾ 𝑅))
31, 2syl 17 . . . . . 6 (𝜑 → (𝐹𝐹) = ( I ↾ 𝑅))
413ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹:𝑅1-1-onto𝑆)
5 f1of 6610 . . . . . . . . . . . . . 14 (𝐹:𝑅1-1-onto𝑆𝐹:𝑅𝑆)
64, 5syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹:𝑅𝑆)
7 simp2 1133 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝑢𝑅)
86, 7ffvelrnd 6847 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹𝑢) ∈ 𝑆)
9 simp3 1134 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝑣𝑅)
106, 9ffvelrnd 6847 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹𝑣) ∈ 𝑆)
11 simpl 485 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → 𝑥 = (𝐹𝑢))
1211fveq2d 6669 . . . . . . . . . . . . . . 15 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → (𝐹𝑥) = (𝐹‘(𝐹𝑢)))
13 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → 𝑦 = (𝐹𝑣))
1413fveq2d 6669 . . . . . . . . . . . . . . 15 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → (𝐹𝑦) = (𝐹‘(𝐹𝑣)))
1512, 14oveq12d 7168 . . . . . . . . . . . . . 14 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
1615cnveqd 5741 . . . . . . . . . . . . 13 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
17 catcisolem.g . . . . . . . . . . . . 13 𝐻 = (𝑥𝑆, 𝑦𝑆((𝐹𝑥)𝐺(𝐹𝑦)))
18 ovex 7183 . . . . . . . . . . . . . 14 ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) ∈ V
1918cnvex 7624 . . . . . . . . . . . . 13 ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) ∈ V
2016, 17, 19ovmpoa 7299 . . . . . . . . . . . 12 (((𝐹𝑢) ∈ 𝑆 ∧ (𝐹𝑣) ∈ 𝑆) → ((𝐹𝑢)𝐻(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
218, 10, 20syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹𝑢)𝐻(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
22 f1ocnvfv1 7027 . . . . . . . . . . . . . 14 ((𝐹:𝑅1-1-onto𝑆𝑢𝑅) → (𝐹‘(𝐹𝑢)) = 𝑢)
234, 7, 22syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹‘(𝐹𝑢)) = 𝑢)
24 f1ocnvfv1 7027 . . . . . . . . . . . . . 14 ((𝐹:𝑅1-1-onto𝑆𝑣𝑅) → (𝐹‘(𝐹𝑣)) = 𝑣)
254, 9, 24syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹‘(𝐹𝑣)) = 𝑣)
2623, 25oveq12d 7168 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) = (𝑢𝐺𝑣))
2726cnveqd 5741 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) = (𝑢𝐺𝑣))
2821, 27eqtrd 2856 . . . . . . . . . 10 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹𝑢)𝐻(𝐹𝑣)) = (𝑢𝐺𝑣))
2928coeq1d 5727 . . . . . . . . 9 ((𝜑𝑢𝑅𝑣𝑅) → (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)) = ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)))
30 catciso.r . . . . . . . . . . 11 𝑅 = (Base‘𝑋)
31 eqid 2821 . . . . . . . . . . 11 (Hom ‘𝑋) = (Hom ‘𝑋)
32 eqid 2821 . . . . . . . . . . 11 (Hom ‘𝑌) = (Hom ‘𝑌)
33 catcisolem.1 . . . . . . . . . . . 12 (𝜑𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
34333ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
3530, 31, 32, 34, 7, 9ffthf1o 17183 . . . . . . . . . 10 ((𝜑𝑢𝑅𝑣𝑅) → (𝑢𝐺𝑣):(𝑢(Hom ‘𝑋)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑌)(𝐹𝑣)))
36 f1ococnv1 6638 . . . . . . . . . 10 ((𝑢𝐺𝑣):(𝑢(Hom ‘𝑋)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑌)(𝐹𝑣)) → ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3735, 36syl 17 . . . . . . . . 9 ((𝜑𝑢𝑅𝑣𝑅) → ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3829, 37eqtrd 2856 . . . . . . . 8 ((𝜑𝑢𝑅𝑣𝑅) → (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3938mpoeq3dva 7225 . . . . . . 7 (𝜑 → (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣))) = (𝑢𝑅, 𝑣𝑅 ↦ ( I ↾ (𝑢(Hom ‘𝑋)𝑣))))
40 fveq2 6665 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑋)‘𝑧) = ((Hom ‘𝑋)‘⟨𝑢, 𝑣⟩))
41 df-ov 7153 . . . . . . . . . 10 (𝑢(Hom ‘𝑋)𝑣) = ((Hom ‘𝑋)‘⟨𝑢, 𝑣⟩)
4240, 41syl6eqr 2874 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑋)‘𝑧) = (𝑢(Hom ‘𝑋)𝑣))
4342reseq2d 5848 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → ( I ↾ ((Hom ‘𝑋)‘𝑧)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
4443mpompt 7260 . . . . . . 7 (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧))) = (𝑢𝑅, 𝑣𝑅 ↦ ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
4539, 44syl6eqr 2874 . . . . . 6 (𝜑 → (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣))) = (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧))))
463, 45opeq12d 4805 . . . . 5 (𝜑 → ⟨(𝐹𝐹), (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)))⟩ = ⟨( I ↾ 𝑅), (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧)))⟩)
47 inss1 4205 . . . . . . . . 9 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Full 𝑌)
48 fullfunc 17170 . . . . . . . . 9 (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌)
4947, 48sstri 3976 . . . . . . . 8 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Func 𝑌)
5049ssbri 5104 . . . . . . 7 (𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺𝐹(𝑋 Func 𝑌)𝐺)
5133, 50syl 17 . . . . . 6 (𝜑𝐹(𝑋 Func 𝑌)𝐺)
52 catciso.s . . . . . . 7 𝑆 = (Base‘𝑌)
53 eqid 2821 . . . . . . 7 (Id‘𝑌) = (Id‘𝑌)
54 eqid 2821 . . . . . . 7 (Id‘𝑋) = (Id‘𝑋)
55 eqid 2821 . . . . . . 7 (comp‘𝑌) = (comp‘𝑌)
56 eqid 2821 . . . . . . 7 (comp‘𝑋) = (comp‘𝑋)
57 catciso.c . . . . . . . . . 10 𝐶 = (CatCat‘𝑈)
58 catciso.b . . . . . . . . . 10 𝐵 = (Base‘𝐶)
59 catciso.u . . . . . . . . . 10 (𝜑𝑈𝑉)
6057, 58, 59catcbas 17351 . . . . . . . . 9 (𝜑𝐵 = (𝑈 ∩ Cat))
61 inss2 4206 . . . . . . . . 9 (𝑈 ∩ Cat) ⊆ Cat
6260, 61eqsstrdi 4021 . . . . . . . 8 (𝜑𝐵 ⊆ Cat)
63 catciso.y . . . . . . . 8 (𝜑𝑌𝐵)
6462, 63sseldd 3968 . . . . . . 7 (𝜑𝑌 ∈ Cat)
65 catciso.x . . . . . . . 8 (𝜑𝑋𝐵)
6662, 65sseldd 3968 . . . . . . 7 (𝜑𝑋 ∈ Cat)
67 f1ocnv 6622 . . . . . . . 8 (𝐹:𝑅1-1-onto𝑆𝐹:𝑆1-1-onto𝑅)
68 f1of 6610 . . . . . . . 8 (𝐹:𝑆1-1-onto𝑅𝐹:𝑆𝑅)
691, 67, 683syl 18 . . . . . . 7 (𝜑𝐹:𝑆𝑅)
70 ovex 7183 . . . . . . . . . 10 ((𝐹𝑥)𝐺(𝐹𝑦)) ∈ V
7170cnvex 7624 . . . . . . . . 9 ((𝐹𝑥)𝐺(𝐹𝑦)) ∈ V
7217, 71fnmpoi 7762 . . . . . . . 8 𝐻 Fn (𝑆 × 𝑆)
7372a1i 11 . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
7433adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
7569ffvelrnda 6846 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → (𝐹𝑢) ∈ 𝑅)
7675adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹𝑢) ∈ 𝑅)
7769ffvelrnda 6846 . . . . . . . . . . 11 ((𝜑𝑣𝑆) → (𝐹𝑣) ∈ 𝑅)
7877adantrl 714 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹𝑣) ∈ 𝑅)
7930, 31, 32, 74, 76, 78ffthf1o 17183 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
80 f1ocnv 6622 . . . . . . . . 9 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
81 f1of 6610 . . . . . . . . 9 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
8279, 80, 813syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
83 simpl 485 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
8483fveq2d 6669 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐹𝑥) = (𝐹𝑢))
85 simpr 487 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
8685fveq2d 6669 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐹𝑦) = (𝐹𝑣))
8784, 86oveq12d 7168 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑣)))
8887cnveqd 5741 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑣)))
89 ovex 7183 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑣)) ∈ V
9089cnvex 7624 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑣)) ∈ V
9188, 17, 90ovmpoa 7299 . . . . . . . . . 10 ((𝑢𝑆𝑣𝑆) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
9291adantl 484 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
931adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝐹:𝑅1-1-onto𝑆)
94 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝑢𝑆)
95 f1ocnvfv2 7028 . . . . . . . . . . . 12 ((𝐹:𝑅1-1-onto𝑆𝑢𝑆) → (𝐹‘(𝐹𝑢)) = 𝑢)
9693, 94, 95syl2anc 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹‘(𝐹𝑢)) = 𝑢)
97 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝑣𝑆)
98 f1ocnvfv2 7028 . . . . . . . . . . . 12 ((𝐹:𝑅1-1-onto𝑆𝑣𝑆) → (𝐹‘(𝐹𝑣)) = 𝑣)
9993, 97, 98syl2anc 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹‘(𝐹𝑣)) = 𝑣)
10096, 99oveq12d 7168 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
101100eqcomd 2827 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢(Hom ‘𝑌)𝑣) = ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
10292, 101feq12d 6497 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝑢𝐻𝑣):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))))
10382, 102mpbird 259 . . . . . . 7 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝐻𝑣):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
104 simpr 487 . . . . . . . . . 10 ((𝜑𝑢𝑆) → 𝑢𝑆)
105 simpl 485 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑢) → 𝑥 = 𝑢)
106105fveq2d 6669 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝐹𝑥) = (𝐹𝑢))
107 simpr 487 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑢) → 𝑦 = 𝑢)
108107fveq2d 6669 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝐹𝑦) = (𝐹𝑢))
109106, 108oveq12d 7168 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑢)))
110109cnveqd 5741 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑢)))
111 ovex 7183 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑢)) ∈ V
112111cnvex 7624 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑢)) ∈ V
113110, 17, 112ovmpoa 7299 . . . . . . . . . 10 ((𝑢𝑆𝑢𝑆) → (𝑢𝐻𝑢) = ((𝐹𝑢)𝐺(𝐹𝑢)))
114104, 104, 113syl2anc 586 . . . . . . . . 9 ((𝜑𝑢𝑆) → (𝑢𝐻𝑢) = ((𝐹𝑢)𝐺(𝐹𝑢)))
115114fveq1d 6667 . . . . . . . 8 ((𝜑𝑢𝑆) → ((𝑢𝐻𝑢)‘((Id‘𝑌)‘𝑢)) = (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)))
11651adantr 483 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝐹(𝑋 Func 𝑌)𝐺)
11730, 54, 53, 116, 75funcid 17134 . . . . . . . . . 10 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘(𝐹‘(𝐹𝑢))))
1181, 95sylan 582 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → (𝐹‘(𝐹𝑢)) = 𝑢)
119118fveq2d 6669 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((Id‘𝑌)‘(𝐹‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢))
120117, 119eqtrd 2856 . . . . . . . . 9 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢))
12133adantr 483 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
12230, 31, 32, 121, 75, 75ffthf1o 17183 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((𝐹𝑢)𝐺(𝐹𝑢)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑢))))
12366adantr 483 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝑋 ∈ Cat)
12430, 31, 54, 123, 75catidcl 16947 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((Id‘𝑋)‘(𝐹𝑢)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢)))
125 f1ocnvfv 7029 . . . . . . . . . 10 ((((𝐹𝑢)𝐺(𝐹𝑢)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑢))) ∧ ((Id‘𝑋)‘(𝐹𝑢)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))) → ((((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢))))
126122, 124, 125syl2anc 586 . . . . . . . . 9 ((𝜑𝑢𝑆) → ((((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢))))
127120, 126mpd 15 . . . . . . . 8 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢)))
128115, 127eqtrd 2856 . . . . . . 7 ((𝜑𝑢𝑆) → ((𝑢𝐻𝑢)‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢)))
129513ad2ant1 1129 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹(𝑋 Func 𝑌)𝐺)
130693ad2ant1 1129 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹:𝑆𝑅)
131 simp21 1202 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑢𝑆)
132130, 131ffvelrnd 6847 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑢) ∈ 𝑅)
133 simp22 1203 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑣𝑆)
134130, 133ffvelrnd 6847 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑣) ∈ 𝑅)
135 simp23 1204 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑧𝑆)
136130, 135ffvelrnd 6847 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑧) ∈ 𝑅)
137333ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
13830, 31, 32, 137, 132, 134ffthf1o 17183 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
13913ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹:𝑅1-1-onto𝑆)
140139, 131, 95syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑢)) = 𝑢)
141139, 133, 98syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑣)) = 𝑣)
142140, 141oveq12d 7168 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
143142f1oeq3d 6607 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣)))
144138, 143mpbid 234 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣))
145 f1ocnv 6622 . . . . . . . . . . . . 13 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
146 f1of 6610 . . . . . . . . . . . . 13 (((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
147144, 145, 1463syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
148 simp3l 1197 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣))
149147, 148ffvelrnd 6847 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
15030, 31, 32, 137, 134, 136ffthf1o 17183 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))))
151 f1ocnvfv2 7028 . . . . . . . . . . . . . . . . 17 ((𝐹:𝑅1-1-onto𝑆𝑧𝑆) → (𝐹‘(𝐹𝑧)) = 𝑧)
152139, 135, 151syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑧)) = 𝑧)
153141, 152oveq12d 7168 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) = (𝑣(Hom ‘𝑌)𝑧))
154153f1oeq3d 6607 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) ↔ ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧)))
155150, 154mpbid 234 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧))
156 f1ocnv 6622 . . . . . . . . . . . . 13 (((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)–1-1-onto→((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
157 f1of 6610 . . . . . . . . . . . . 13 (((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)–1-1-onto→((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)⟶((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
158155, 156, 1573syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)⟶((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
159 simp3r 1198 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))
160158, 159ffvelrnd 6847 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔) ∈ ((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
16130, 31, 56, 55, 129, 132, 134, 136, 149, 160funcco 17135 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))(⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧)))(((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
162140, 141opeq12d 4805 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩ = ⟨𝑢, 𝑣⟩)
163162, 152oveq12d 7168 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧))) = (⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧))
164 f1ocnvfv2 7028 . . . . . . . . . . . 12 ((((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧)) → (((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)) = 𝑔)
165155, 159, 164syl2anc 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)) = 𝑔)
166 f1ocnvfv2 7028 . . . . . . . . . . . 12 ((((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) ∧ 𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣)) → (((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) = 𝑓)
167144, 148, 166syl2anc 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) = 𝑓)
168163, 165, 167oveq123d 7171 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))(⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧)))(((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓))
169161, 168eqtrd 2856 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓))
17030, 31, 32, 137, 132, 136ffthf1o 17183 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))))
171140, 152oveq12d 7168 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) = (𝑢(Hom ‘𝑌)𝑧))
172171f1oeq3d 6607 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) ↔ ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧)))
173170, 172mpbid 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧))
174663ad2ant1 1129 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑋 ∈ Cat)
17530, 31, 56, 174, 132, 134, 136, 149, 160catcocl 16950 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧)))
176 f1ocnvfv 7029 . . . . . . . . . 10 ((((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧) ∧ ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))) → ((((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
177173, 175, 176syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
178169, 177mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)))
179 simpl 485 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑧) → 𝑥 = 𝑢)
180179fveq2d 6669 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑧) → (𝐹𝑥) = (𝐹𝑢))
181 simpr 487 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑧) → 𝑦 = 𝑧)
182181fveq2d 6669 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑧) → (𝐹𝑦) = (𝐹𝑧))
183180, 182oveq12d 7168 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑧)))
184183cnveqd 5741 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑧)))
185 ovex 7183 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑧)) ∈ V
186185cnvex 7624 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑧)) ∈ V
187184, 17, 186ovmpoa 7299 . . . . . . . . . 10 ((𝑢𝑆𝑧𝑆) → (𝑢𝐻𝑧) = ((𝐹𝑢)𝐺(𝐹𝑧)))
188131, 135, 187syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑢𝐻𝑧) = ((𝐹𝑢)𝐺(𝐹𝑧)))
189188fveq1d 6667 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑧)‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)))
190 simpl 485 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑣𝑦 = 𝑧) → 𝑥 = 𝑣)
191190fveq2d 6669 . . . . . . . . . . . . . 14 ((𝑥 = 𝑣𝑦 = 𝑧) → (𝐹𝑥) = (𝐹𝑣))
192 simpr 487 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑣𝑦 = 𝑧) → 𝑦 = 𝑧)
193192fveq2d 6669 . . . . . . . . . . . . . 14 ((𝑥 = 𝑣𝑦 = 𝑧) → (𝐹𝑦) = (𝐹𝑧))
194191, 193oveq12d 7168 . . . . . . . . . . . . 13 ((𝑥 = 𝑣𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑣)𝐺(𝐹𝑧)))
195194cnveqd 5741 . . . . . . . . . . . 12 ((𝑥 = 𝑣𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑣)𝐺(𝐹𝑧)))
196 ovex 7183 . . . . . . . . . . . . 13 ((𝐹𝑣)𝐺(𝐹𝑧)) ∈ V
197196cnvex 7624 . . . . . . . . . . . 12 ((𝐹𝑣)𝐺(𝐹𝑧)) ∈ V
198195, 17, 197ovmpoa 7299 . . . . . . . . . . 11 ((𝑣𝑆𝑧𝑆) → (𝑣𝐻𝑧) = ((𝐹𝑣)𝐺(𝐹𝑧)))
199133, 135, 198syl2anc 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑣𝐻𝑧) = ((𝐹𝑣)𝐺(𝐹𝑧)))
200199fveq1d 6667 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑣𝐻𝑧)‘𝑔) = (((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))
201131, 133, 91syl2anc 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
202201fveq1d 6667 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑣)‘𝑓) = (((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))
203200, 202oveq12d 7168 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝑣𝐻𝑧)‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))((𝑢𝐻𝑣)‘𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)))
204178, 189, 2033eqtr4d 2866 . . . . . . 7 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑧)‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = (((𝑣𝐻𝑧)‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))((𝑢𝐻𝑣)‘𝑓)))
20552, 30, 32, 31, 53, 54, 55, 56, 64, 66, 69, 73, 103, 128, 204isfuncd 17129 . . . . . 6 (𝜑𝐹(𝑌 Func 𝑋)𝐻)
20630, 51, 205cofuval2 17151 . . . . 5 (𝜑 → (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐹𝐹), (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)))⟩)
207 eqid 2821 . . . . . 6 (idfunc𝑋) = (idfunc𝑋)
208207, 30, 66, 31idfuval 17140 . . . . 5 (𝜑 → (idfunc𝑋) = ⟨( I ↾ 𝑅), (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧)))⟩)
20946, 206, 2083eqtr4d 2866 . . . 4 (𝜑 → (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩) = (idfunc𝑋))
210 eqid 2821 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
211 df-br 5060 . . . . . 6 (𝐹(𝑋 Func 𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋 Func 𝑌))
21251, 211sylib 220 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋 Func 𝑌))
213 df-br 5060 . . . . . 6 (𝐹(𝑌 Func 𝑋)𝐻 ↔ ⟨𝐹, 𝐻⟩ ∈ (𝑌 Func 𝑋))
214205, 213sylib 220 . . . . 5 (𝜑 → ⟨𝐹, 𝐻⟩ ∈ (𝑌 Func 𝑋))
21557, 58, 59, 210, 65, 63, 65, 212, 214catcco 17355 . . . 4 (𝜑 → (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩))
216 eqid 2821 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
21757, 58, 216, 207, 59, 65catcid 17357 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) = (idfunc𝑋))
218209, 215, 2173eqtr4d 2866 . . 3 (𝜑 → (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = ((Id‘𝐶)‘𝑋))
219 eqid 2821 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
220 eqid 2821 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
22157catccat 17358 . . . . 5 (𝑈𝑉𝐶 ∈ Cat)
22259, 221syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
22357, 58, 59, 219, 65, 63catchom 17353 . . . . 5 (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 Func 𝑌))
224212, 223eleqtrrd 2916 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋(Hom ‘𝐶)𝑌))
22557, 58, 59, 219, 63, 65catchom 17353 . . . . 5 (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 Func 𝑋))
226214, 225eleqtrrd 2916 . . . 4 (𝜑 → ⟨𝐹, 𝐻⟩ ∈ (𝑌(Hom ‘𝐶)𝑋))
22758, 219, 210, 216, 220, 222, 65, 63, 224, 226issect2 17018 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩ ↔ (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = ((Id‘𝐶)‘𝑋)))
228218, 227mpbird 259 . 2 (𝜑 → ⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩)
229 f1ococnv2 6636 . . . . . . 7 (𝐹:𝑅1-1-onto𝑆 → (𝐹𝐹) = ( I ↾ 𝑆))
2301, 229syl 17 . . . . . 6 (𝜑 → (𝐹𝐹) = ( I ↾ 𝑆))
231913adant1 1126 . . . . . . . . . 10 ((𝜑𝑢𝑆𝑣𝑆) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
232231coeq2d 5728 . . . . . . . . 9 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)) = (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))))
233333ad2ant1 1129 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
234753adant3 1128 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → (𝐹𝑢) ∈ 𝑅)
235773adant2 1127 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → (𝐹𝑣) ∈ 𝑅)
23630, 31, 32, 233, 234, 235ffthf1o 17183 . . . . . . . . . . 11 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
2371003impb 1111 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
238237f1oeq3d 6607 . . . . . . . . . . 11 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣)))
239236, 238mpbid 234 . . . . . . . . . 10 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣))
240 f1ococnv2 6636 . . . . . . . . . 10 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
241239, 240syl 17 . . . . . . . . 9 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
242232, 241eqtrd 2856 . . . . . . . 8 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
243242mpoeq3dva 7225 . . . . . . 7 (𝜑 → (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣))) = (𝑢𝑆, 𝑣𝑆 ↦ ( I ↾ (𝑢(Hom ‘𝑌)𝑣))))
244 fveq2 6665 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑌)‘𝑧) = ((Hom ‘𝑌)‘⟨𝑢, 𝑣⟩))
245 df-ov 7153 . . . . . . . . . 10 (𝑢(Hom ‘𝑌)𝑣) = ((Hom ‘𝑌)‘⟨𝑢, 𝑣⟩)
246244, 245syl6eqr 2874 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑌)‘𝑧) = (𝑢(Hom ‘𝑌)𝑣))
247246reseq2d 5848 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → ( I ↾ ((Hom ‘𝑌)‘𝑧)) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
248247mpompt 7260 . . . . . . 7 (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧))) = (𝑢𝑆, 𝑣𝑆 ↦ ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
249243, 248syl6eqr 2874 . . . . . 6 (𝜑 → (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣))) = (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧))))
250230, 249opeq12d 4805 . . . . 5 (𝜑 → ⟨(𝐹𝐹), (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)))⟩ = ⟨( I ↾ 𝑆), (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧)))⟩)
25152, 205, 51cofuval2 17151 . . . . 5 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩) = ⟨(𝐹𝐹), (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)))⟩)
252 eqid 2821 . . . . . 6 (idfunc𝑌) = (idfunc𝑌)
253252, 52, 64, 32idfuval 17140 . . . . 5 (𝜑 → (idfunc𝑌) = ⟨( I ↾ 𝑆), (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧)))⟩)
254250, 251, 2533eqtr4d 2866 . . . 4 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩) = (idfunc𝑌))
25557, 58, 59, 210, 63, 65, 63, 214, 212catcco 17355 . . . 4 (𝜑 → (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩))
25657, 58, 216, 252, 59, 63catcid 17357 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑌) = (idfunc𝑌))
257254, 255, 2563eqtr4d 2866 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = ((Id‘𝐶)‘𝑌))
25858, 219, 210, 216, 220, 222, 63, 65, 226, 224issect2 17018 . . 3 (𝜑 → (⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩ ↔ (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = ((Id‘𝐶)‘𝑌)))
259257, 258mpbird 259 . 2 (𝜑 → ⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩)
260 catcisolem.i . . 3 𝐼 = (Inv‘𝐶)
26158, 260, 222, 65, 63, 220isinv 17024 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩ ↔ (⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩ ∧ ⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩)))
262228, 259, 261mpbir2and 711 1 (𝜑 → ⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  cin 3935  cop 4567   class class class wbr 5059  cmpt 5139   I cid 5454   × cxp 5548  ccnv 5549  cres 5552  ccom 5554   Fn wfn 6345  wf 6346  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150  cmpo 7152  Basecbs 16477  Hom chom 16570  compcco 16571  Catccat 16929  Idccid 16930  Sectcsect 17008  Invcinv 17009   Func cfunc 17118  idfunccidfu 17119  func ccofu 17120   Full cful 17166   Faith cfth 17167  CatCatccatc 17348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-hom 16583  df-cco 16584  df-cat 16933  df-cid 16934  df-sect 17011  df-inv 17012  df-func 17122  df-idfu 17123  df-cofu 17124  df-full 17168  df-fth 17169  df-catc 17349
This theorem is referenced by:  catciso  17361
  Copyright terms: Public domain W3C validator