MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcisolem Structured version   Visualization version   GIF version

Theorem catcisolem 17199
Description: Lemma for catciso 17200. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
catciso.c 𝐶 = (CatCat‘𝑈)
catciso.b 𝐵 = (Base‘𝐶)
catciso.r 𝑅 = (Base‘𝑋)
catciso.s 𝑆 = (Base‘𝑌)
catciso.u (𝜑𝑈𝑉)
catciso.x (𝜑𝑋𝐵)
catciso.y (𝜑𝑌𝐵)
catcisolem.i 𝐼 = (Inv‘𝐶)
catcisolem.g 𝐻 = (𝑥𝑆, 𝑦𝑆((𝐹𝑥)𝐺(𝐹𝑦)))
catcisolem.1 (𝜑𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
catcisolem.2 (𝜑𝐹:𝑅1-1-onto𝑆)
Assertion
Ref Expression
catcisolem (𝜑 → ⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem catcisolem
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcisolem.2 . . . . . . 7 (𝜑𝐹:𝑅1-1-onto𝑆)
2 f1ococnv1 6518 . . . . . . 7 (𝐹:𝑅1-1-onto𝑆 → (𝐹𝐹) = ( I ↾ 𝑅))
31, 2syl 17 . . . . . 6 (𝜑 → (𝐹𝐹) = ( I ↾ 𝑅))
413ad2ant1 1126 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹:𝑅1-1-onto𝑆)
5 f1of 6490 . . . . . . . . . . . . . 14 (𝐹:𝑅1-1-onto𝑆𝐹:𝑅𝑆)
64, 5syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹:𝑅𝑆)
7 simp2 1130 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝑢𝑅)
86, 7ffvelrnd 6724 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹𝑢) ∈ 𝑆)
9 simp3 1131 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → 𝑣𝑅)
106, 9ffvelrnd 6724 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹𝑣) ∈ 𝑆)
11 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → 𝑥 = (𝐹𝑢))
1211fveq2d 6549 . . . . . . . . . . . . . . 15 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → (𝐹𝑥) = (𝐹‘(𝐹𝑢)))
13 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → 𝑦 = (𝐹𝑣))
1413fveq2d 6549 . . . . . . . . . . . . . . 15 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → (𝐹𝑦) = (𝐹‘(𝐹𝑣)))
1512, 14oveq12d 7041 . . . . . . . . . . . . . 14 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
1615cnveqd 5639 . . . . . . . . . . . . 13 ((𝑥 = (𝐹𝑢) ∧ 𝑦 = (𝐹𝑣)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
17 catcisolem.g . . . . . . . . . . . . 13 𝐻 = (𝑥𝑆, 𝑦𝑆((𝐹𝑥)𝐺(𝐹𝑦)))
18 ovex 7055 . . . . . . . . . . . . . 14 ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) ∈ V
1918cnvex 7493 . . . . . . . . . . . . 13 ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) ∈ V
2016, 17, 19ovmpoa 7168 . . . . . . . . . . . 12 (((𝐹𝑢) ∈ 𝑆 ∧ (𝐹𝑣) ∈ 𝑆) → ((𝐹𝑢)𝐻(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
218, 10, 20syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹𝑢)𝐻(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))))
22 f1ocnvfv1 6905 . . . . . . . . . . . . . 14 ((𝐹:𝑅1-1-onto𝑆𝑢𝑅) → (𝐹‘(𝐹𝑢)) = 𝑢)
234, 7, 22syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹‘(𝐹𝑢)) = 𝑢)
24 f1ocnvfv1 6905 . . . . . . . . . . . . . 14 ((𝐹:𝑅1-1-onto𝑆𝑣𝑅) → (𝐹‘(𝐹𝑣)) = 𝑣)
254, 9, 24syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑢𝑅𝑣𝑅) → (𝐹‘(𝐹𝑣)) = 𝑣)
2623, 25oveq12d 7041 . . . . . . . . . . . 12 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) = (𝑢𝐺𝑣))
2726cnveqd 5639 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹‘(𝐹𝑢))𝐺(𝐹‘(𝐹𝑣))) = (𝑢𝐺𝑣))
2821, 27eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑢𝑅𝑣𝑅) → ((𝐹𝑢)𝐻(𝐹𝑣)) = (𝑢𝐺𝑣))
2928coeq1d 5625 . . . . . . . . 9 ((𝜑𝑢𝑅𝑣𝑅) → (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)) = ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)))
30 catciso.r . . . . . . . . . . 11 𝑅 = (Base‘𝑋)
31 eqid 2797 . . . . . . . . . . 11 (Hom ‘𝑋) = (Hom ‘𝑋)
32 eqid 2797 . . . . . . . . . . 11 (Hom ‘𝑌) = (Hom ‘𝑌)
33 catcisolem.1 . . . . . . . . . . . 12 (𝜑𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
34333ad2ant1 1126 . . . . . . . . . . 11 ((𝜑𝑢𝑅𝑣𝑅) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
3530, 31, 32, 34, 7, 9ffthf1o 17022 . . . . . . . . . 10 ((𝜑𝑢𝑅𝑣𝑅) → (𝑢𝐺𝑣):(𝑢(Hom ‘𝑋)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑌)(𝐹𝑣)))
36 f1ococnv1 6518 . . . . . . . . . 10 ((𝑢𝐺𝑣):(𝑢(Hom ‘𝑋)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑌)(𝐹𝑣)) → ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3735, 36syl 17 . . . . . . . . 9 ((𝜑𝑢𝑅𝑣𝑅) → ((𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3829, 37eqtrd 2833 . . . . . . . 8 ((𝜑𝑢𝑅𝑣𝑅) → (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
3938mpoeq3dva 7096 . . . . . . 7 (𝜑 → (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣))) = (𝑢𝑅, 𝑣𝑅 ↦ ( I ↾ (𝑢(Hom ‘𝑋)𝑣))))
40 fveq2 6545 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑋)‘𝑧) = ((Hom ‘𝑋)‘⟨𝑢, 𝑣⟩))
41 df-ov 7026 . . . . . . . . . 10 (𝑢(Hom ‘𝑋)𝑣) = ((Hom ‘𝑋)‘⟨𝑢, 𝑣⟩)
4240, 41syl6eqr 2851 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑋)‘𝑧) = (𝑢(Hom ‘𝑋)𝑣))
4342reseq2d 5741 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → ( I ↾ ((Hom ‘𝑋)‘𝑧)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
4443mpompt 7129 . . . . . . 7 (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧))) = (𝑢𝑅, 𝑣𝑅 ↦ ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))
4539, 44syl6eqr 2851 . . . . . 6 (𝜑 → (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣))) = (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧))))
463, 45opeq12d 4724 . . . . 5 (𝜑 → ⟨(𝐹𝐹), (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)))⟩ = ⟨( I ↾ 𝑅), (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧)))⟩)
47 inss1 4131 . . . . . . . . 9 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Full 𝑌)
48 fullfunc 17009 . . . . . . . . 9 (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌)
4947, 48sstri 3904 . . . . . . . 8 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Func 𝑌)
5049ssbri 5013 . . . . . . 7 (𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺𝐹(𝑋 Func 𝑌)𝐺)
5133, 50syl 17 . . . . . 6 (𝜑𝐹(𝑋 Func 𝑌)𝐺)
52 catciso.s . . . . . . 7 𝑆 = (Base‘𝑌)
53 eqid 2797 . . . . . . 7 (Id‘𝑌) = (Id‘𝑌)
54 eqid 2797 . . . . . . 7 (Id‘𝑋) = (Id‘𝑋)
55 eqid 2797 . . . . . . 7 (comp‘𝑌) = (comp‘𝑌)
56 eqid 2797 . . . . . . 7 (comp‘𝑋) = (comp‘𝑋)
57 catciso.c . . . . . . . . . 10 𝐶 = (CatCat‘𝑈)
58 catciso.b . . . . . . . . . 10 𝐵 = (Base‘𝐶)
59 catciso.u . . . . . . . . . 10 (𝜑𝑈𝑉)
6057, 58, 59catcbas 17190 . . . . . . . . 9 (𝜑𝐵 = (𝑈 ∩ Cat))
61 inss2 4132 . . . . . . . . 9 (𝑈 ∩ Cat) ⊆ Cat
6260, 61syl6eqss 3948 . . . . . . . 8 (𝜑𝐵 ⊆ Cat)
63 catciso.y . . . . . . . 8 (𝜑𝑌𝐵)
6462, 63sseldd 3896 . . . . . . 7 (𝜑𝑌 ∈ Cat)
65 catciso.x . . . . . . . 8 (𝜑𝑋𝐵)
6662, 65sseldd 3896 . . . . . . 7 (𝜑𝑋 ∈ Cat)
67 f1ocnv 6502 . . . . . . . 8 (𝐹:𝑅1-1-onto𝑆𝐹:𝑆1-1-onto𝑅)
68 f1of 6490 . . . . . . . 8 (𝐹:𝑆1-1-onto𝑅𝐹:𝑆𝑅)
691, 67, 683syl 18 . . . . . . 7 (𝜑𝐹:𝑆𝑅)
70 ovex 7055 . . . . . . . . . 10 ((𝐹𝑥)𝐺(𝐹𝑦)) ∈ V
7170cnvex 7493 . . . . . . . . 9 ((𝐹𝑥)𝐺(𝐹𝑦)) ∈ V
7217, 71fnmpoi 7631 . . . . . . . 8 𝐻 Fn (𝑆 × 𝑆)
7372a1i 11 . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
7433adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
7569ffvelrnda 6723 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → (𝐹𝑢) ∈ 𝑅)
7675adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹𝑢) ∈ 𝑅)
7769ffvelrnda 6723 . . . . . . . . . . 11 ((𝜑𝑣𝑆) → (𝐹𝑣) ∈ 𝑅)
7877adantrl 712 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹𝑣) ∈ 𝑅)
7930, 31, 32, 74, 76, 78ffthf1o 17022 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
80 f1ocnv 6502 . . . . . . . . 9 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
81 f1of 6490 . . . . . . . . 9 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
8279, 80, 813syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
83 simpl 483 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
8483fveq2d 6549 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐹𝑥) = (𝐹𝑢))
85 simpr 485 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
8685fveq2d 6549 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐹𝑦) = (𝐹𝑣))
8784, 86oveq12d 7041 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑣)))
8887cnveqd 5639 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑣)))
89 ovex 7055 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑣)) ∈ V
9089cnvex 7493 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑣)) ∈ V
9188, 17, 90ovmpoa 7168 . . . . . . . . . 10 ((𝑢𝑆𝑣𝑆) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
9291adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
931adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝐹:𝑅1-1-onto𝑆)
94 simprl 767 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝑢𝑆)
95 f1ocnvfv2 6906 . . . . . . . . . . . 12 ((𝐹:𝑅1-1-onto𝑆𝑢𝑆) → (𝐹‘(𝐹𝑢)) = 𝑢)
9693, 94, 95syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹‘(𝐹𝑢)) = 𝑢)
97 simprr 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → 𝑣𝑆)
98 f1ocnvfv2 6906 . . . . . . . . . . . 12 ((𝐹:𝑅1-1-onto𝑆𝑣𝑆) → (𝐹‘(𝐹𝑣)) = 𝑣)
9993, 97, 98syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝐹‘(𝐹𝑣)) = 𝑣)
10096, 99oveq12d 7041 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
101100eqcomd 2803 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢(Hom ‘𝑌)𝑣) = ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
10292, 101feq12d 6377 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → ((𝑢𝐻𝑣):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣)))⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))))
10382, 102mpbird 258 . . . . . . 7 ((𝜑 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝐻𝑣):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
104 simpr 485 . . . . . . . . . 10 ((𝜑𝑢𝑆) → 𝑢𝑆)
105 simpl 483 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑢) → 𝑥 = 𝑢)
106105fveq2d 6549 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝐹𝑥) = (𝐹𝑢))
107 simpr 485 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑢) → 𝑦 = 𝑢)
108107fveq2d 6549 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝐹𝑦) = (𝐹𝑢))
109106, 108oveq12d 7041 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑢)))
110109cnveqd 5639 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑢)))
111 ovex 7055 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑢)) ∈ V
112111cnvex 7493 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑢)) ∈ V
113110, 17, 112ovmpoa 7168 . . . . . . . . . 10 ((𝑢𝑆𝑢𝑆) → (𝑢𝐻𝑢) = ((𝐹𝑢)𝐺(𝐹𝑢)))
114104, 104, 113syl2anc 584 . . . . . . . . 9 ((𝜑𝑢𝑆) → (𝑢𝐻𝑢) = ((𝐹𝑢)𝐺(𝐹𝑢)))
115114fveq1d 6547 . . . . . . . 8 ((𝜑𝑢𝑆) → ((𝑢𝐻𝑢)‘((Id‘𝑌)‘𝑢)) = (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)))
11651adantr 481 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝐹(𝑋 Func 𝑌)𝐺)
11730, 54, 53, 116, 75funcid 16973 . . . . . . . . . 10 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘(𝐹‘(𝐹𝑢))))
1181, 95sylan 580 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → (𝐹‘(𝐹𝑢)) = 𝑢)
119118fveq2d 6549 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((Id‘𝑌)‘(𝐹‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢))
120117, 119eqtrd 2833 . . . . . . . . 9 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢))
12133adantr 481 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
12230, 31, 32, 121, 75, 75ffthf1o 17022 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((𝐹𝑢)𝐺(𝐹𝑢)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑢))))
12366adantr 481 . . . . . . . . . . 11 ((𝜑𝑢𝑆) → 𝑋 ∈ Cat)
12430, 31, 54, 123, 75catidcl 16786 . . . . . . . . . 10 ((𝜑𝑢𝑆) → ((Id‘𝑋)‘(𝐹𝑢)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢)))
125 f1ocnvfv 6907 . . . . . . . . . 10 ((((𝐹𝑢)𝐺(𝐹𝑢)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑢))) ∧ ((Id‘𝑋)‘(𝐹𝑢)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑢))) → ((((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢))))
126122, 124, 125syl2anc 584 . . . . . . . . 9 ((𝜑𝑢𝑆) → ((((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑋)‘(𝐹𝑢))) = ((Id‘𝑌)‘𝑢) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢))))
127120, 126mpd 15 . . . . . . . 8 ((𝜑𝑢𝑆) → (((𝐹𝑢)𝐺(𝐹𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢)))
128115, 127eqtrd 2833 . . . . . . 7 ((𝜑𝑢𝑆) → ((𝑢𝐻𝑢)‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(𝐹𝑢)))
129513ad2ant1 1126 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹(𝑋 Func 𝑌)𝐺)
130693ad2ant1 1126 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹:𝑆𝑅)
131 simp21 1199 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑢𝑆)
132130, 131ffvelrnd 6724 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑢) ∈ 𝑅)
133 simp22 1200 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑣𝑆)
134130, 133ffvelrnd 6724 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑣) ∈ 𝑅)
135 simp23 1201 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑧𝑆)
136130, 135ffvelrnd 6724 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹𝑧) ∈ 𝑅)
137333ad2ant1 1126 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
13830, 31, 32, 137, 132, 134ffthf1o 17022 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
13913ad2ant1 1126 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹:𝑅1-1-onto𝑆)
140139, 131, 95syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑢)) = 𝑢)
141139, 133, 98syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑣)) = 𝑣)
142140, 141oveq12d 7041 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
143142f1oeq3d 6487 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣)))
144138, 143mpbid 233 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣))
145 f1ocnv 6502 . . . . . . . . . . . . 13 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
146 f1of 6490 . . . . . . . . . . . . 13 (((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)–1-1-onto→((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
147144, 145, 1463syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑣)):(𝑢(Hom ‘𝑌)𝑣)⟶((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
148 simp3l 1194 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣))
149147, 148ffvelrnd 6724 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣)))
15030, 31, 32, 137, 134, 136ffthf1o 17022 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))))
151 f1ocnvfv2 6906 . . . . . . . . . . . . . . . . 17 ((𝐹:𝑅1-1-onto𝑆𝑧𝑆) → (𝐹‘(𝐹𝑧)) = 𝑧)
152139, 135, 151syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(𝐹𝑧)) = 𝑧)
153141, 152oveq12d 7041 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) = (𝑣(Hom ‘𝑌)𝑧))
154153f1oeq3d 6487 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑣))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) ↔ ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧)))
155150, 154mpbid 233 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧))
156 f1ocnv 6502 . . . . . . . . . . . . 13 (((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)–1-1-onto→((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
157 f1of 6490 . . . . . . . . . . . . 13 (((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)–1-1-onto→((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)⟶((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
158155, 156, 1573syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑣)𝐺(𝐹𝑧)):(𝑣(Hom ‘𝑌)𝑧)⟶((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
159 simp3r 1195 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))
160158, 159ffvelrnd 6724 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔) ∈ ((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧)))
16130, 31, 56, 55, 129, 132, 134, 136, 149, 160funcco 16974 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))(⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧)))(((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
162140, 141opeq12d 4724 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩ = ⟨𝑢, 𝑣⟩)
163162, 152oveq12d 7041 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧))) = (⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧))
164 f1ocnvfv2 6906 . . . . . . . . . . . 12 ((((𝐹𝑣)𝐺(𝐹𝑧)):((𝐹𝑣)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧)) → (((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)) = 𝑔)
165155, 159, 164syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)) = 𝑔)
166 f1ocnvfv2 6906 . . . . . . . . . . . 12 ((((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) ∧ 𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣)) → (((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) = 𝑓)
167144, 148, 166syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) = 𝑓)
168163, 165, 167oveq123d 7044 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑣)𝐺(𝐹𝑧))‘(((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))(⟨(𝐹‘(𝐹𝑢)), (𝐹‘(𝐹𝑣))⟩(comp‘𝑌)(𝐹‘(𝐹𝑧)))(((𝐹𝑢)𝐺(𝐹𝑣))‘(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓))
169161, 168eqtrd 2833 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓))
17030, 31, 32, 137, 132, 136ffthf1o 17022 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))))
171140, 152oveq12d 7041 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) = (𝑢(Hom ‘𝑌)𝑧))
172171f1oeq3d 6487 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑧))) ↔ ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧)))
173170, 172mpbid 233 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧))
174663ad2ant1 1126 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑋 ∈ Cat)
17530, 31, 56, 174, 132, 134, 136, 149, 160catcocl 16789 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧)))
176 f1ocnvfv 6907 . . . . . . . . . 10 ((((𝐹𝑢)𝐺(𝐹𝑧)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧) ∧ ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)) ∈ ((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑧))) → ((((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
177173, 175, 176syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((𝐹𝑢)𝐺(𝐹𝑧))‘((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))) = (𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))))
178169, 177mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)))
179 simpl 483 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑧) → 𝑥 = 𝑢)
180179fveq2d 6549 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑧) → (𝐹𝑥) = (𝐹𝑢))
181 simpr 485 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑧) → 𝑦 = 𝑧)
182181fveq2d 6549 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑧) → (𝐹𝑦) = (𝐹𝑧))
183180, 182oveq12d 7041 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑧)))
184183cnveqd 5639 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑢)𝐺(𝐹𝑧)))
185 ovex 7055 . . . . . . . . . . . 12 ((𝐹𝑢)𝐺(𝐹𝑧)) ∈ V
186185cnvex 7493 . . . . . . . . . . 11 ((𝐹𝑢)𝐺(𝐹𝑧)) ∈ V
187184, 17, 186ovmpoa 7168 . . . . . . . . . 10 ((𝑢𝑆𝑧𝑆) → (𝑢𝐻𝑧) = ((𝐹𝑢)𝐺(𝐹𝑧)))
188131, 135, 187syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑢𝐻𝑧) = ((𝐹𝑢)𝐺(𝐹𝑧)))
189188fveq1d 6547 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑧)‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = (((𝐹𝑢)𝐺(𝐹𝑧))‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)))
190 simpl 483 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑣𝑦 = 𝑧) → 𝑥 = 𝑣)
191190fveq2d 6549 . . . . . . . . . . . . . 14 ((𝑥 = 𝑣𝑦 = 𝑧) → (𝐹𝑥) = (𝐹𝑣))
192 simpr 485 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑣𝑦 = 𝑧) → 𝑦 = 𝑧)
193192fveq2d 6549 . . . . . . . . . . . . . 14 ((𝑥 = 𝑣𝑦 = 𝑧) → (𝐹𝑦) = (𝐹𝑧))
194191, 193oveq12d 7041 . . . . . . . . . . . . 13 ((𝑥 = 𝑣𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑣)𝐺(𝐹𝑧)))
195194cnveqd 5639 . . . . . . . . . . . 12 ((𝑥 = 𝑣𝑦 = 𝑧) → ((𝐹𝑥)𝐺(𝐹𝑦)) = ((𝐹𝑣)𝐺(𝐹𝑧)))
196 ovex 7055 . . . . . . . . . . . . 13 ((𝐹𝑣)𝐺(𝐹𝑧)) ∈ V
197196cnvex 7493 . . . . . . . . . . . 12 ((𝐹𝑣)𝐺(𝐹𝑧)) ∈ V
198195, 17, 197ovmpoa 7168 . . . . . . . . . . 11 ((𝑣𝑆𝑧𝑆) → (𝑣𝐻𝑧) = ((𝐹𝑣)𝐺(𝐹𝑧)))
199133, 135, 198syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑣𝐻𝑧) = ((𝐹𝑣)𝐺(𝐹𝑧)))
200199fveq1d 6547 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑣𝐻𝑧)‘𝑔) = (((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔))
201131, 133, 91syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
202201fveq1d 6547 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑣)‘𝑓) = (((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓))
203200, 202oveq12d 7041 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝑣𝐻𝑧)‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))((𝑢𝐻𝑣)‘𝑓)) = ((((𝐹𝑣)𝐺(𝐹𝑧))‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))(((𝐹𝑢)𝐺(𝐹𝑣))‘𝑓)))
204178, 189, 2033eqtr4d 2843 . . . . . . 7 ((𝜑 ∧ (𝑢𝑆𝑣𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑧)‘(𝑔(⟨𝑢, 𝑣⟩(comp‘𝑌)𝑧)𝑓)) = (((𝑣𝐻𝑧)‘𝑔)(⟨(𝐹𝑢), (𝐹𝑣)⟩(comp‘𝑋)(𝐹𝑧))((𝑢𝐻𝑣)‘𝑓)))
20552, 30, 32, 31, 53, 54, 55, 56, 64, 66, 69, 73, 103, 128, 204isfuncd 16968 . . . . . 6 (𝜑𝐹(𝑌 Func 𝑋)𝐻)
20630, 51, 205cofuval2 16990 . . . . 5 (𝜑 → (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐹𝐹), (𝑢𝑅, 𝑣𝑅 ↦ (((𝐹𝑢)𝐻(𝐹𝑣)) ∘ (𝑢𝐺𝑣)))⟩)
207 eqid 2797 . . . . . 6 (idfunc𝑋) = (idfunc𝑋)
208207, 30, 66, 31idfuval 16979 . . . . 5 (𝜑 → (idfunc𝑋) = ⟨( I ↾ 𝑅), (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧)))⟩)
20946, 206, 2083eqtr4d 2843 . . . 4 (𝜑 → (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩) = (idfunc𝑋))
210 eqid 2797 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
211 df-br 4969 . . . . . 6 (𝐹(𝑋 Func 𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋 Func 𝑌))
21251, 211sylib 219 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋 Func 𝑌))
213 df-br 4969 . . . . . 6 (𝐹(𝑌 Func 𝑋)𝐻 ↔ ⟨𝐹, 𝐻⟩ ∈ (𝑌 Func 𝑋))
214205, 213sylib 219 . . . . 5 (𝜑 → ⟨𝐹, 𝐻⟩ ∈ (𝑌 Func 𝑋))
21557, 58, 59, 210, 65, 63, 65, 212, 214catcco 17194 . . . 4 (𝜑 → (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = (⟨𝐹, 𝐻⟩ ∘func𝐹, 𝐺⟩))
216 eqid 2797 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
21757, 58, 216, 207, 59, 65catcid 17196 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) = (idfunc𝑋))
218209, 215, 2173eqtr4d 2843 . . 3 (𝜑 → (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = ((Id‘𝐶)‘𝑋))
219 eqid 2797 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
220 eqid 2797 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
22157catccat 17197 . . . . 5 (𝑈𝑉𝐶 ∈ Cat)
22259, 221syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
22357, 58, 59, 219, 65, 63catchom 17192 . . . . 5 (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 Func 𝑌))
224212, 223eleqtrrd 2888 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋(Hom ‘𝐶)𝑌))
22557, 58, 59, 219, 63, 65catchom 17192 . . . . 5 (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 Func 𝑋))
226214, 225eleqtrrd 2888 . . . 4 (𝜑 → ⟨𝐹, 𝐻⟩ ∈ (𝑌(Hom ‘𝐶)𝑋))
22758, 219, 210, 216, 220, 222, 65, 63, 224, 226issect2 16857 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩ ↔ (⟨𝐹, 𝐻⟩(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)⟨𝐹, 𝐺⟩) = ((Id‘𝐶)‘𝑋)))
228218, 227mpbird 258 . 2 (𝜑 → ⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩)
229 f1ococnv2 6516 . . . . . . 7 (𝐹:𝑅1-1-onto𝑆 → (𝐹𝐹) = ( I ↾ 𝑆))
2301, 229syl 17 . . . . . 6 (𝜑 → (𝐹𝐹) = ( I ↾ 𝑆))
231913adant1 1123 . . . . . . . . . 10 ((𝜑𝑢𝑆𝑣𝑆) → (𝑢𝐻𝑣) = ((𝐹𝑢)𝐺(𝐹𝑣)))
232231coeq2d 5626 . . . . . . . . 9 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)) = (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))))
233333ad2ant1 1126 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)
234753adant3 1125 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → (𝐹𝑢) ∈ 𝑅)
235773adant2 1124 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → (𝐹𝑣) ∈ 𝑅)
23630, 31, 32, 233, 234, 235ffthf1o 17022 . . . . . . . . . . 11 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))))
2371003impb 1108 . . . . . . . . . . . 12 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) = (𝑢(Hom ‘𝑌)𝑣))
238237f1oeq3d 6487 . . . . . . . . . . 11 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→((𝐹‘(𝐹𝑢))(Hom ‘𝑌)(𝐹‘(𝐹𝑣))) ↔ ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣)))
239236, 238mpbid 233 . . . . . . . . . 10 ((𝜑𝑢𝑆𝑣𝑆) → ((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣))
240 f1ococnv2 6516 . . . . . . . . . 10 (((𝐹𝑢)𝐺(𝐹𝑣)):((𝐹𝑢)(Hom ‘𝑋)(𝐹𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
241239, 240syl 17 . . . . . . . . 9 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ ((𝐹𝑢)𝐺(𝐹𝑣))) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
242232, 241eqtrd 2833 . . . . . . . 8 ((𝜑𝑢𝑆𝑣𝑆) → (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
243242mpoeq3dva 7096 . . . . . . 7 (𝜑 → (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣))) = (𝑢𝑆, 𝑣𝑆 ↦ ( I ↾ (𝑢(Hom ‘𝑌)𝑣))))
244 fveq2 6545 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑌)‘𝑧) = ((Hom ‘𝑌)‘⟨𝑢, 𝑣⟩))
245 df-ov 7026 . . . . . . . . . 10 (𝑢(Hom ‘𝑌)𝑣) = ((Hom ‘𝑌)‘⟨𝑢, 𝑣⟩)
246244, 245syl6eqr 2851 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → ((Hom ‘𝑌)‘𝑧) = (𝑢(Hom ‘𝑌)𝑣))
247246reseq2d 5741 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → ( I ↾ ((Hom ‘𝑌)‘𝑧)) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
248247mpompt 7129 . . . . . . 7 (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧))) = (𝑢𝑆, 𝑣𝑆 ↦ ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))
249243, 248syl6eqr 2851 . . . . . 6 (𝜑 → (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣))) = (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧))))
250230, 249opeq12d 4724 . . . . 5 (𝜑 → ⟨(𝐹𝐹), (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)))⟩ = ⟨( I ↾ 𝑆), (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧)))⟩)
25152, 205, 51cofuval2 16990 . . . . 5 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩) = ⟨(𝐹𝐹), (𝑢𝑆, 𝑣𝑆 ↦ (((𝐹𝑢)𝐺(𝐹𝑣)) ∘ (𝑢𝐻𝑣)))⟩)
252 eqid 2797 . . . . . 6 (idfunc𝑌) = (idfunc𝑌)
253252, 52, 64, 32idfuval 16979 . . . . 5 (𝜑 → (idfunc𝑌) = ⟨( I ↾ 𝑆), (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧)))⟩)
254250, 251, 2533eqtr4d 2843 . . . 4 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩) = (idfunc𝑌))
25557, 58, 59, 210, 63, 65, 63, 214, 212catcco 17194 . . . 4 (𝜑 → (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = (⟨𝐹, 𝐺⟩ ∘func𝐹, 𝐻⟩))
25657, 58, 216, 252, 59, 63catcid 17196 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑌) = (idfunc𝑌))
257254, 255, 2563eqtr4d 2843 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = ((Id‘𝐶)‘𝑌))
25858, 219, 210, 216, 220, 222, 63, 65, 226, 224issect2 16857 . . 3 (𝜑 → (⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩ ↔ (⟨𝐹, 𝐺⟩(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)⟨𝐹, 𝐻⟩) = ((Id‘𝐶)‘𝑌)))
259257, 258mpbird 258 . 2 (𝜑 → ⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩)
260 catcisolem.i . . 3 𝐼 = (Inv‘𝐶)
26158, 260, 222, 65, 63, 220isinv 16863 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩ ↔ (⟨𝐹, 𝐺⟩(𝑋(Sect‘𝐶)𝑌)⟨𝐹, 𝐻⟩ ∧ ⟨𝐹, 𝐻⟩(𝑌(Sect‘𝐶)𝑋)⟨𝐹, 𝐺⟩)))
262228, 259, 261mpbir2and 709 1 (𝜑 → ⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1525  wcel 2083  cin 3864  cop 4484   class class class wbr 4968  cmpt 5047   I cid 5354   × cxp 5448  ccnv 5449  cres 5452  ccom 5454   Fn wfn 6227  wf 6228  1-1-ontowf1o 6231  cfv 6232  (class class class)co 7023  cmpo 7025  Basecbs 16316  Hom chom 16409  compcco 16410  Catccat 16768  Idccid 16769  Sectcsect 16847  Invcinv 16848   Func cfunc 16957  idfunccidfu 16958  func ccofu 16959   Full cful 17005   Faith cfth 17006  CatCatccatc 17187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-fz 12747  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-hom 16422  df-cco 16423  df-cat 16772  df-cid 16773  df-sect 16850  df-inv 16851  df-func 16961  df-idfu 16962  df-cofu 16963  df-full 17007  df-fth 17008  df-catc 17188
This theorem is referenced by:  catciso  17200
  Copyright terms: Public domain W3C validator