Step | Hyp | Ref
| Expression |
1 | | catcisolem.2 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) |
2 | | f1ococnv1 6728 |
. . . . . . 7
⊢ (𝐹:𝑅–1-1-onto→𝑆 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝑅)) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝑅)) |
4 | 1 | 3ad2ant1 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → 𝐹:𝑅–1-1-onto→𝑆) |
5 | | f1of 6700 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑅–1-1-onto→𝑆 → 𝐹:𝑅⟶𝑆) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → 𝐹:𝑅⟶𝑆) |
7 | | simp2 1135 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → 𝑢 ∈ 𝑅) |
8 | 6, 7 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → (𝐹‘𝑢) ∈ 𝑆) |
9 | | simp3 1136 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → 𝑣 ∈ 𝑅) |
10 | 6, 9 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → (𝐹‘𝑣) ∈ 𝑆) |
11 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = (𝐹‘𝑢) ∧ 𝑦 = (𝐹‘𝑣)) → 𝑥 = (𝐹‘𝑢)) |
12 | 11 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = (𝐹‘𝑢) ∧ 𝑦 = (𝐹‘𝑣)) → (◡𝐹‘𝑥) = (◡𝐹‘(𝐹‘𝑢))) |
13 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = (𝐹‘𝑢) ∧ 𝑦 = (𝐹‘𝑣)) → 𝑦 = (𝐹‘𝑣)) |
14 | 13 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = (𝐹‘𝑢) ∧ 𝑦 = (𝐹‘𝑣)) → (◡𝐹‘𝑦) = (◡𝐹‘(𝐹‘𝑣))) |
15 | 12, 14 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = (𝐹‘𝑢) ∧ 𝑦 = (𝐹‘𝑣)) → ((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) = ((◡𝐹‘(𝐹‘𝑢))𝐺(◡𝐹‘(𝐹‘𝑣)))) |
16 | 15 | cnveqd 5773 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = (𝐹‘𝑢) ∧ 𝑦 = (𝐹‘𝑣)) → ◡((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) = ◡((◡𝐹‘(𝐹‘𝑢))𝐺(◡𝐹‘(𝐹‘𝑣)))) |
17 | | catcisolem.g |
. . . . . . . . . . . . 13
⊢ 𝐻 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ◡((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦))) |
18 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐹‘(𝐹‘𝑢))𝐺(◡𝐹‘(𝐹‘𝑣))) ∈ V |
19 | 18 | cnvex 7746 |
. . . . . . . . . . . . 13
⊢ ◡((◡𝐹‘(𝐹‘𝑢))𝐺(◡𝐹‘(𝐹‘𝑣))) ∈ V |
20 | 16, 17, 19 | ovmpoa 7406 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑢) ∈ 𝑆 ∧ (𝐹‘𝑣) ∈ 𝑆) → ((𝐹‘𝑢)𝐻(𝐹‘𝑣)) = ◡((◡𝐹‘(𝐹‘𝑢))𝐺(◡𝐹‘(𝐹‘𝑣)))) |
21 | 8, 10, 20 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → ((𝐹‘𝑢)𝐻(𝐹‘𝑣)) = ◡((◡𝐹‘(𝐹‘𝑢))𝐺(◡𝐹‘(𝐹‘𝑣)))) |
22 | | f1ocnvfv1 7129 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝑅–1-1-onto→𝑆 ∧ 𝑢 ∈ 𝑅) → (◡𝐹‘(𝐹‘𝑢)) = 𝑢) |
23 | 4, 7, 22 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → (◡𝐹‘(𝐹‘𝑢)) = 𝑢) |
24 | | f1ocnvfv1 7129 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝑅–1-1-onto→𝑆 ∧ 𝑣 ∈ 𝑅) → (◡𝐹‘(𝐹‘𝑣)) = 𝑣) |
25 | 4, 9, 24 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → (◡𝐹‘(𝐹‘𝑣)) = 𝑣) |
26 | 23, 25 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → ((◡𝐹‘(𝐹‘𝑢))𝐺(◡𝐹‘(𝐹‘𝑣))) = (𝑢𝐺𝑣)) |
27 | 26 | cnveqd 5773 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → ◡((◡𝐹‘(𝐹‘𝑢))𝐺(◡𝐹‘(𝐹‘𝑣))) = ◡(𝑢𝐺𝑣)) |
28 | 21, 27 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → ((𝐹‘𝑢)𝐻(𝐹‘𝑣)) = ◡(𝑢𝐺𝑣)) |
29 | 28 | coeq1d 5759 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → (((𝐹‘𝑢)𝐻(𝐹‘𝑣)) ∘ (𝑢𝐺𝑣)) = (◡(𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣))) |
30 | | catciso.r |
. . . . . . . . . . 11
⊢ 𝑅 = (Base‘𝑋) |
31 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (Hom
‘𝑋) = (Hom
‘𝑋) |
32 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (Hom
‘𝑌) = (Hom
‘𝑌) |
33 | | catcisolem.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺) |
34 | 33 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺) |
35 | 30, 31, 32, 34, 7, 9 | ffthf1o 17551 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → (𝑢𝐺𝑣):(𝑢(Hom ‘𝑋)𝑣)–1-1-onto→((𝐹‘𝑢)(Hom ‘𝑌)(𝐹‘𝑣))) |
36 | | f1ococnv1 6728 |
. . . . . . . . . 10
⊢ ((𝑢𝐺𝑣):(𝑢(Hom ‘𝑋)𝑣)–1-1-onto→((𝐹‘𝑢)(Hom ‘𝑌)(𝐹‘𝑣)) → (◡(𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣))) |
37 | 35, 36 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → (◡(𝑢𝐺𝑣) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣))) |
38 | 29, 37 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) → (((𝐹‘𝑢)𝐻(𝐹‘𝑣)) ∘ (𝑢𝐺𝑣)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣))) |
39 | 38 | mpoeq3dva 7330 |
. . . . . . 7
⊢ (𝜑 → (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑅 ↦ (((𝐹‘𝑢)𝐻(𝐹‘𝑣)) ∘ (𝑢𝐺𝑣))) = (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑅 ↦ ( I ↾ (𝑢(Hom ‘𝑋)𝑣)))) |
40 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑢, 𝑣〉 → ((Hom ‘𝑋)‘𝑧) = ((Hom ‘𝑋)‘〈𝑢, 𝑣〉)) |
41 | | df-ov 7258 |
. . . . . . . . . 10
⊢ (𝑢(Hom ‘𝑋)𝑣) = ((Hom ‘𝑋)‘〈𝑢, 𝑣〉) |
42 | 40, 41 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑢, 𝑣〉 → ((Hom ‘𝑋)‘𝑧) = (𝑢(Hom ‘𝑋)𝑣)) |
43 | 42 | reseq2d 5880 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑢, 𝑣〉 → ( I ↾ ((Hom ‘𝑋)‘𝑧)) = ( I ↾ (𝑢(Hom ‘𝑋)𝑣))) |
44 | 43 | mpompt 7366 |
. . . . . . 7
⊢ (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧))) = (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑅 ↦ ( I ↾ (𝑢(Hom ‘𝑋)𝑣))) |
45 | 39, 44 | eqtr4di 2797 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑅 ↦ (((𝐹‘𝑢)𝐻(𝐹‘𝑣)) ∘ (𝑢𝐺𝑣))) = (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧)))) |
46 | 3, 45 | opeq12d 4809 |
. . . . 5
⊢ (𝜑 → 〈(◡𝐹 ∘ 𝐹), (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑅 ↦ (((𝐹‘𝑢)𝐻(𝐹‘𝑣)) ∘ (𝑢𝐺𝑣)))〉 = 〈( I ↾ 𝑅), (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧)))〉) |
47 | | inss1 4159 |
. . . . . . . . 9
⊢ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Full 𝑌) |
48 | | fullfunc 17538 |
. . . . . . . . 9
⊢ (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌) |
49 | 47, 48 | sstri 3926 |
. . . . . . . 8
⊢ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Func 𝑌) |
50 | 49 | ssbri 5115 |
. . . . . . 7
⊢ (𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺 → 𝐹(𝑋 Func 𝑌)𝐺) |
51 | 33, 50 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹(𝑋 Func 𝑌)𝐺) |
52 | | catciso.s |
. . . . . . 7
⊢ 𝑆 = (Base‘𝑌) |
53 | | eqid 2738 |
. . . . . . 7
⊢
(Id‘𝑌) =
(Id‘𝑌) |
54 | | eqid 2738 |
. . . . . . 7
⊢
(Id‘𝑋) =
(Id‘𝑋) |
55 | | eqid 2738 |
. . . . . . 7
⊢
(comp‘𝑌) =
(comp‘𝑌) |
56 | | eqid 2738 |
. . . . . . 7
⊢
(comp‘𝑋) =
(comp‘𝑋) |
57 | | catciso.c |
. . . . . . . . . 10
⊢ 𝐶 = (CatCat‘𝑈) |
58 | | catciso.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐶) |
59 | | catciso.u |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
60 | 57, 58, 59 | catcbas 17732 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) |
61 | | inss2 4160 |
. . . . . . . . 9
⊢ (𝑈 ∩ Cat) ⊆
Cat |
62 | 60, 61 | eqsstrdi 3971 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ⊆ Cat) |
63 | | catciso.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
64 | 62, 63 | sseldd 3918 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ Cat) |
65 | | catciso.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
66 | 62, 65 | sseldd 3918 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ Cat) |
67 | | f1ocnv 6712 |
. . . . . . . 8
⊢ (𝐹:𝑅–1-1-onto→𝑆 → ◡𝐹:𝑆–1-1-onto→𝑅) |
68 | | f1of 6700 |
. . . . . . . 8
⊢ (◡𝐹:𝑆–1-1-onto→𝑅 → ◡𝐹:𝑆⟶𝑅) |
69 | 1, 67, 68 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ◡𝐹:𝑆⟶𝑅) |
70 | | ovex 7288 |
. . . . . . . . . 10
⊢ ((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) ∈ V |
71 | 70 | cnvex 7746 |
. . . . . . . . 9
⊢ ◡((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) ∈ V |
72 | 17, 71 | fnmpoi 7883 |
. . . . . . . 8
⊢ 𝐻 Fn (𝑆 × 𝑆) |
73 | 72 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
74 | 33 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺) |
75 | 69 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → (◡𝐹‘𝑢) ∈ 𝑅) |
76 | 75 | adantrr 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → (◡𝐹‘𝑢) ∈ 𝑅) |
77 | 69 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → (◡𝐹‘𝑣) ∈ 𝑅) |
78 | 77 | adantrl 712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → (◡𝐹‘𝑣) ∈ 𝑅) |
79 | 30, 31, 32, 74, 76, 78 | ffthf1o 17551 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣)))) |
80 | | f1ocnv 6712 |
. . . . . . . . 9
⊢ (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣))) → ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣)))–1-1-onto→((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))) |
81 | | f1of 6700 |
. . . . . . . . 9
⊢ (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣)))–1-1-onto→((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣)) → ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣)))⟶((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))) |
82 | 79, 80, 81 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣)))⟶((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))) |
83 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑥 = 𝑢) |
84 | 83 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (◡𝐹‘𝑥) = (◡𝐹‘𝑢)) |
85 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣) |
86 | 85 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (◡𝐹‘𝑦) = (◡𝐹‘𝑣)) |
87 | 84, 86 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) = ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))) |
88 | 87 | cnveqd 5773 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ◡((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) = ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))) |
89 | | ovex 7288 |
. . . . . . . . . . . 12
⊢ ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)) ∈ V |
90 | 89 | cnvex 7746 |
. . . . . . . . . . 11
⊢ ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)) ∈ V |
91 | 88, 17, 90 | ovmpoa 7406 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (𝑢𝐻𝑣) = ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))) |
92 | 91 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → (𝑢𝐻𝑣) = ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))) |
93 | 1 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → 𝐹:𝑅–1-1-onto→𝑆) |
94 | | simprl 767 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → 𝑢 ∈ 𝑆) |
95 | | f1ocnvfv2 7130 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑅–1-1-onto→𝑆 ∧ 𝑢 ∈ 𝑆) → (𝐹‘(◡𝐹‘𝑢)) = 𝑢) |
96 | 93, 94, 95 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → (𝐹‘(◡𝐹‘𝑢)) = 𝑢) |
97 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → 𝑣 ∈ 𝑆) |
98 | | f1ocnvfv2 7130 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑅–1-1-onto→𝑆 ∧ 𝑣 ∈ 𝑆) → (𝐹‘(◡𝐹‘𝑣)) = 𝑣) |
99 | 93, 97, 98 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → (𝐹‘(◡𝐹‘𝑣)) = 𝑣) |
100 | 96, 99 | oveq12d 7273 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → ((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣))) = (𝑢(Hom ‘𝑌)𝑣)) |
101 | 100 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → (𝑢(Hom ‘𝑌)𝑣) = ((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣)))) |
102 | 92, 101 | feq12d 6572 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → ((𝑢𝐻𝑣):(𝑢(Hom ‘𝑌)𝑣)⟶((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣)) ↔ ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣)))⟶((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣)))) |
103 | 82, 102 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → (𝑢𝐻𝑣):(𝑢(Hom ‘𝑌)𝑣)⟶((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))) |
104 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → 𝑢 ∈ 𝑆) |
105 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → 𝑥 = 𝑢) |
106 | 105 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (◡𝐹‘𝑥) = (◡𝐹‘𝑢)) |
107 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → 𝑦 = 𝑢) |
108 | 107 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (◡𝐹‘𝑦) = (◡𝐹‘𝑢)) |
109 | 106, 108 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) = ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))) |
110 | 109 | cnveqd 5773 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ◡((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) = ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))) |
111 | | ovex 7288 |
. . . . . . . . . . . 12
⊢ ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢)) ∈ V |
112 | 111 | cnvex 7746 |
. . . . . . . . . . 11
⊢ ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢)) ∈ V |
113 | 110, 17, 112 | ovmpoa 7406 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) → (𝑢𝐻𝑢) = ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))) |
114 | 104, 104,
113 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → (𝑢𝐻𝑢) = ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))) |
115 | 114 | fveq1d 6758 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → ((𝑢𝐻𝑢)‘((Id‘𝑌)‘𝑢)) = (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))‘((Id‘𝑌)‘𝑢))) |
116 | 51 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → 𝐹(𝑋 Func 𝑌)𝐺) |
117 | 30, 54, 53, 116, 75 | funcid 17501 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))‘((Id‘𝑋)‘(◡𝐹‘𝑢))) = ((Id‘𝑌)‘(𝐹‘(◡𝐹‘𝑢)))) |
118 | 1, 95 | sylan 579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → (𝐹‘(◡𝐹‘𝑢)) = 𝑢) |
119 | 118 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → ((Id‘𝑌)‘(𝐹‘(◡𝐹‘𝑢))) = ((Id‘𝑌)‘𝑢)) |
120 | 117, 119 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))‘((Id‘𝑋)‘(◡𝐹‘𝑢))) = ((Id‘𝑌)‘𝑢)) |
121 | 33 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺) |
122 | 30, 31, 32, 121, 75, 75 | ffthf1o 17551 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑢))–1-1-onto→((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑢)))) |
123 | 66 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → 𝑋 ∈ Cat) |
124 | 30, 31, 54, 123, 75 | catidcl 17308 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → ((Id‘𝑋)‘(◡𝐹‘𝑢)) ∈ ((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑢))) |
125 | | f1ocnvfv 7131 |
. . . . . . . . . 10
⊢ ((((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑢))–1-1-onto→((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑢))) ∧ ((Id‘𝑋)‘(◡𝐹‘𝑢)) ∈ ((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑢))) → ((((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))‘((Id‘𝑋)‘(◡𝐹‘𝑢))) = ((Id‘𝑌)‘𝑢) → (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(◡𝐹‘𝑢)))) |
126 | 122, 124,
125 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → ((((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))‘((Id‘𝑋)‘(◡𝐹‘𝑢))) = ((Id‘𝑌)‘𝑢) → (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(◡𝐹‘𝑢)))) |
127 | 120, 126 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑢))‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(◡𝐹‘𝑢))) |
128 | 115, 127 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → ((𝑢𝐻𝑢)‘((Id‘𝑌)‘𝑢)) = ((Id‘𝑋)‘(◡𝐹‘𝑢))) |
129 | 51 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹(𝑋 Func 𝑌)𝐺) |
130 | 69 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ◡𝐹:𝑆⟶𝑅) |
131 | | simp21 1204 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑢 ∈ 𝑆) |
132 | 130, 131 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (◡𝐹‘𝑢) ∈ 𝑅) |
133 | | simp22 1205 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑣 ∈ 𝑆) |
134 | 130, 133 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (◡𝐹‘𝑣) ∈ 𝑅) |
135 | | simp23 1206 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑧 ∈ 𝑆) |
136 | 130, 135 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (◡𝐹‘𝑧) ∈ 𝑅) |
137 | 33 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺) |
138 | 30, 31, 32, 137, 132, 134 | ffthf1o 17551 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣)))) |
139 | 1 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝐹:𝑅–1-1-onto→𝑆) |
140 | 139, 131,
95 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(◡𝐹‘𝑢)) = 𝑢) |
141 | 139, 133,
98 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(◡𝐹‘𝑣)) = 𝑣) |
142 | 140, 141 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣))) = (𝑢(Hom ‘𝑌)𝑣)) |
143 | 142 | f1oeq3d 6697 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣))) ↔ ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣))) |
144 | 138, 143 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣)) |
145 | | f1ocnv 6712 |
. . . . . . . . . . . . 13
⊢ (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) → ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):(𝑢(Hom ‘𝑌)𝑣)–1-1-onto→((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))) |
146 | | f1of 6700 |
. . . . . . . . . . . . 13
⊢ (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):(𝑢(Hom ‘𝑌)𝑣)–1-1-onto→((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣)) → ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):(𝑢(Hom ‘𝑌)𝑣)⟶((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))) |
147 | 144, 145,
146 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):(𝑢(Hom ‘𝑌)𝑣)⟶((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))) |
148 | | simp3l 1199 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣)) |
149 | 147, 148 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓) ∈ ((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))) |
150 | 30, 31, 32, 137, 134, 136 | ffthf1o 17551 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)):((◡𝐹‘𝑣)(Hom ‘𝑋)(◡𝐹‘𝑧))–1-1-onto→((𝐹‘(◡𝐹‘𝑣))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑧)))) |
151 | | f1ocnvfv2 7130 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:𝑅–1-1-onto→𝑆 ∧ 𝑧 ∈ 𝑆) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
152 | 139, 135,
151 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
153 | 141, 152 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(◡𝐹‘𝑣))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑧))) = (𝑣(Hom ‘𝑌)𝑧)) |
154 | 153 | f1oeq3d 6697 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)):((◡𝐹‘𝑣)(Hom ‘𝑋)(◡𝐹‘𝑧))–1-1-onto→((𝐹‘(◡𝐹‘𝑣))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑧))) ↔ ((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)):((◡𝐹‘𝑣)(Hom ‘𝑋)(◡𝐹‘𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧))) |
155 | 150, 154 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)):((◡𝐹‘𝑣)(Hom ‘𝑋)(◡𝐹‘𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧)) |
156 | | f1ocnv 6712 |
. . . . . . . . . . . . 13
⊢ (((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)):((◡𝐹‘𝑣)(Hom ‘𝑋)(◡𝐹‘𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧) → ◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)):(𝑣(Hom ‘𝑌)𝑧)–1-1-onto→((◡𝐹‘𝑣)(Hom ‘𝑋)(◡𝐹‘𝑧))) |
157 | | f1of 6700 |
. . . . . . . . . . . . 13
⊢ (◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)):(𝑣(Hom ‘𝑌)𝑧)–1-1-onto→((◡𝐹‘𝑣)(Hom ‘𝑋)(◡𝐹‘𝑧)) → ◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)):(𝑣(Hom ‘𝑌)𝑧)⟶((◡𝐹‘𝑣)(Hom ‘𝑋)(◡𝐹‘𝑧))) |
158 | 155, 156,
157 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)):(𝑣(Hom ‘𝑌)𝑧)⟶((◡𝐹‘𝑣)(Hom ‘𝑋)(◡𝐹‘𝑧))) |
159 | | simp3r 1200 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧)) |
160 | 158, 159 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔) ∈ ((◡𝐹‘𝑣)(Hom ‘𝑋)(◡𝐹‘𝑧))) |
161 | 30, 31, 56, 55, 129, 132, 134, 136, 149, 160 | funcco 17502 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))‘((◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓))) = ((((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘(◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔))(〈(𝐹‘(◡𝐹‘𝑢)), (𝐹‘(◡𝐹‘𝑣))〉(comp‘𝑌)(𝐹‘(◡𝐹‘𝑧)))(((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓)))) |
162 | 140, 141 | opeq12d 4809 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 〈(𝐹‘(◡𝐹‘𝑢)), (𝐹‘(◡𝐹‘𝑣))〉 = 〈𝑢, 𝑣〉) |
163 | 162, 152 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (〈(𝐹‘(◡𝐹‘𝑢)), (𝐹‘(◡𝐹‘𝑣))〉(comp‘𝑌)(𝐹‘(◡𝐹‘𝑧))) = (〈𝑢, 𝑣〉(comp‘𝑌)𝑧)) |
164 | | f1ocnvfv2 7130 |
. . . . . . . . . . . 12
⊢ ((((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)):((◡𝐹‘𝑣)(Hom ‘𝑋)(◡𝐹‘𝑧))–1-1-onto→(𝑣(Hom ‘𝑌)𝑧) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧)) → (((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘(◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)) = 𝑔) |
165 | 155, 159,
164 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘(◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)) = 𝑔) |
166 | | f1ocnvfv2 7130 |
. . . . . . . . . . . 12
⊢ ((((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) ∧ 𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣)) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓)) = 𝑓) |
167 | 144, 148,
166 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓)) = 𝑓) |
168 | 163, 165,
167 | oveq123d 7276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘(◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔))(〈(𝐹‘(◡𝐹‘𝑢)), (𝐹‘(◡𝐹‘𝑣))〉(comp‘𝑌)(𝐹‘(◡𝐹‘𝑧)))(((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓))) = (𝑔(〈𝑢, 𝑣〉(comp‘𝑌)𝑧)𝑓)) |
169 | 161, 168 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))‘((◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓))) = (𝑔(〈𝑢, 𝑣〉(comp‘𝑌)𝑧)𝑓)) |
170 | 30, 31, 32, 137, 132, 136 | ffthf1o 17551 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑧))–1-1-onto→((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑧)))) |
171 | 140, 152 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑧))) = (𝑢(Hom ‘𝑌)𝑧)) |
172 | 171 | f1oeq3d 6697 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑧))–1-1-onto→((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑧))) ↔ ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧))) |
173 | 170, 172 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧)) |
174 | 66 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → 𝑋 ∈ Cat) |
175 | 30, 31, 56, 174, 132, 134, 136, 149, 160 | catcocl 17311 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓)) ∈ ((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑧))) |
176 | | f1ocnvfv 7131 |
. . . . . . . . . 10
⊢ ((((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑧))–1-1-onto→(𝑢(Hom ‘𝑌)𝑧) ∧ ((◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓)) ∈ ((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑧))) → ((((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))‘((◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓))) = (𝑔(〈𝑢, 𝑣〉(comp‘𝑌)𝑧)𝑓) → (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))‘(𝑔(〈𝑢, 𝑣〉(comp‘𝑌)𝑧)𝑓)) = ((◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓)))) |
177 | 173, 175,
176 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))‘((◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓))) = (𝑔(〈𝑢, 𝑣〉(comp‘𝑌)𝑧)𝑓) → (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))‘(𝑔(〈𝑢, 𝑣〉(comp‘𝑌)𝑧)𝑓)) = ((◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓)))) |
178 | 169, 177 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))‘(𝑔(〈𝑢, 𝑣〉(comp‘𝑌)𝑧)𝑓)) = ((◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓))) |
179 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑢) |
180 | 179 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑧) → (◡𝐹‘𝑥) = (◡𝐹‘𝑢)) |
181 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧) |
182 | 181 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑧) → (◡𝐹‘𝑦) = (◡𝐹‘𝑧)) |
183 | 180, 182 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑧) → ((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) = ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))) |
184 | 183 | cnveqd 5773 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑧) → ◡((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) = ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))) |
185 | | ovex 7288 |
. . . . . . . . . . . 12
⊢ ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧)) ∈ V |
186 | 185 | cnvex 7746 |
. . . . . . . . . . 11
⊢ ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧)) ∈ V |
187 | 184, 17, 186 | ovmpoa 7406 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → (𝑢𝐻𝑧) = ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))) |
188 | 131, 135,
187 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑢𝐻𝑧) = ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))) |
189 | 188 | fveq1d 6758 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑧)‘(𝑔(〈𝑢, 𝑣〉(comp‘𝑌)𝑧)𝑓)) = (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑧))‘(𝑔(〈𝑢, 𝑣〉(comp‘𝑌)𝑧)𝑓))) |
190 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑣) |
191 | 190 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑧) → (◡𝐹‘𝑥) = (◡𝐹‘𝑣)) |
192 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧) |
193 | 192 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑧) → (◡𝐹‘𝑦) = (◡𝐹‘𝑧)) |
194 | 191, 193 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑧) → ((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) = ((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))) |
195 | 194 | cnveqd 5773 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑧) → ◡((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦)) = ◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))) |
196 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)) ∈ V |
197 | 196 | cnvex 7746 |
. . . . . . . . . . . 12
⊢ ◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧)) ∈ V |
198 | 195, 17, 197 | ovmpoa 7406 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → (𝑣𝐻𝑧) = ◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))) |
199 | 133, 135,
198 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑣𝐻𝑧) = ◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))) |
200 | 199 | fveq1d 6758 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑣𝐻𝑧)‘𝑔) = (◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)) |
201 | 131, 133,
91 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (𝑢𝐻𝑣) = ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))) |
202 | 201 | fveq1d 6758 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑣)‘𝑓) = (◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓)) |
203 | 200, 202 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → (((𝑣𝐻𝑧)‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))((𝑢𝐻𝑣)‘𝑓)) = ((◡((◡𝐹‘𝑣)𝐺(◡𝐹‘𝑧))‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))(◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))‘𝑓))) |
204 | 178, 189,
203 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑢(Hom ‘𝑌)𝑣) ∧ 𝑔 ∈ (𝑣(Hom ‘𝑌)𝑧))) → ((𝑢𝐻𝑧)‘(𝑔(〈𝑢, 𝑣〉(comp‘𝑌)𝑧)𝑓)) = (((𝑣𝐻𝑧)‘𝑔)(〈(◡𝐹‘𝑢), (◡𝐹‘𝑣)〉(comp‘𝑋)(◡𝐹‘𝑧))((𝑢𝐻𝑣)‘𝑓))) |
205 | 52, 30, 32, 31, 53, 54, 55, 56, 64, 66, 69, 73, 103, 128, 204 | isfuncd 17496 |
. . . . . 6
⊢ (𝜑 → ◡𝐹(𝑌 Func 𝑋)𝐻) |
206 | 30, 51, 205 | cofuval2 17518 |
. . . . 5
⊢ (𝜑 → (〈◡𝐹, 𝐻〉 ∘func
〈𝐹, 𝐺〉) = 〈(◡𝐹 ∘ 𝐹), (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑅 ↦ (((𝐹‘𝑢)𝐻(𝐹‘𝑣)) ∘ (𝑢𝐺𝑣)))〉) |
207 | | eqid 2738 |
. . . . . 6
⊢
(idfunc‘𝑋) = (idfunc‘𝑋) |
208 | 207, 30, 66, 31 | idfuval 17507 |
. . . . 5
⊢ (𝜑 →
(idfunc‘𝑋) = 〈( I ↾ 𝑅), (𝑧 ∈ (𝑅 × 𝑅) ↦ ( I ↾ ((Hom ‘𝑋)‘𝑧)))〉) |
209 | 46, 206, 208 | 3eqtr4d 2788 |
. . . 4
⊢ (𝜑 → (〈◡𝐹, 𝐻〉 ∘func
〈𝐹, 𝐺〉) =
(idfunc‘𝑋)) |
210 | | eqid 2738 |
. . . . 5
⊢
(comp‘𝐶) =
(comp‘𝐶) |
211 | | df-br 5071 |
. . . . . 6
⊢ (𝐹(𝑋 Func 𝑌)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑋 Func 𝑌)) |
212 | 51, 211 | sylib 217 |
. . . . 5
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑋 Func 𝑌)) |
213 | | df-br 5071 |
. . . . . 6
⊢ (◡𝐹(𝑌 Func 𝑋)𝐻 ↔ 〈◡𝐹, 𝐻〉 ∈ (𝑌 Func 𝑋)) |
214 | 205, 213 | sylib 217 |
. . . . 5
⊢ (𝜑 → 〈◡𝐹, 𝐻〉 ∈ (𝑌 Func 𝑋)) |
215 | 57, 58, 59, 210, 65, 63, 65, 212, 214 | catcco 17736 |
. . . 4
⊢ (𝜑 → (〈◡𝐹, 𝐻〉(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)〈𝐹, 𝐺〉) = (〈◡𝐹, 𝐻〉 ∘func
〈𝐹, 𝐺〉)) |
216 | | eqid 2738 |
. . . . 5
⊢
(Id‘𝐶) =
(Id‘𝐶) |
217 | 57, 58, 216, 207, 59, 65 | catcid 17738 |
. . . 4
⊢ (𝜑 → ((Id‘𝐶)‘𝑋) = (idfunc‘𝑋)) |
218 | 209, 215,
217 | 3eqtr4d 2788 |
. . 3
⊢ (𝜑 → (〈◡𝐹, 𝐻〉(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)〈𝐹, 𝐺〉) = ((Id‘𝐶)‘𝑋)) |
219 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
220 | | eqid 2738 |
. . . 4
⊢
(Sect‘𝐶) =
(Sect‘𝐶) |
221 | 57 | catccat 17739 |
. . . . 5
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
222 | 59, 221 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
223 | 57, 58, 59, 219, 65, 63 | catchom 17734 |
. . . . 5
⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 Func 𝑌)) |
224 | 212, 223 | eleqtrrd 2842 |
. . . 4
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
225 | 57, 58, 59, 219, 63, 65 | catchom 17734 |
. . . . 5
⊢ (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 Func 𝑋)) |
226 | 214, 225 | eleqtrrd 2842 |
. . . 4
⊢ (𝜑 → 〈◡𝐹, 𝐻〉 ∈ (𝑌(Hom ‘𝐶)𝑋)) |
227 | 58, 219, 210, 216, 220, 222, 65, 63, 224, 226 | issect2 17383 |
. . 3
⊢ (𝜑 → (〈𝐹, 𝐺〉(𝑋(Sect‘𝐶)𝑌)〈◡𝐹, 𝐻〉 ↔ (〈◡𝐹, 𝐻〉(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)〈𝐹, 𝐺〉) = ((Id‘𝐶)‘𝑋))) |
228 | 218, 227 | mpbird 256 |
. 2
⊢ (𝜑 → 〈𝐹, 𝐺〉(𝑋(Sect‘𝐶)𝑌)〈◡𝐹, 𝐻〉) |
229 | | f1ococnv2 6726 |
. . . . . . 7
⊢ (𝐹:𝑅–1-1-onto→𝑆 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝑆)) |
230 | 1, 229 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝑆)) |
231 | 91 | 3adant1 1128 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (𝑢𝐻𝑣) = ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))) |
232 | 231 | coeq2d 5760 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)) ∘ (𝑢𝐻𝑣)) = (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)) ∘ ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)))) |
233 | 33 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺) |
234 | 75 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (◡𝐹‘𝑢) ∈ 𝑅) |
235 | 77 | 3adant2 1129 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (◡𝐹‘𝑣) ∈ 𝑅) |
236 | 30, 31, 32, 233, 234, 235 | ffthf1o 17551 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣)))) |
237 | 100 | 3impb 1113 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → ((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣))) = (𝑢(Hom ‘𝑌)𝑣)) |
238 | 237 | f1oeq3d 6697 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→((𝐹‘(◡𝐹‘𝑢))(Hom ‘𝑌)(𝐹‘(◡𝐹‘𝑣))) ↔ ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣))) |
239 | 236, 238 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → ((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣)) |
240 | | f1ococnv2 6726 |
. . . . . . . . . 10
⊢ (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)):((◡𝐹‘𝑢)(Hom ‘𝑋)(◡𝐹‘𝑣))–1-1-onto→(𝑢(Hom ‘𝑌)𝑣) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)) ∘ ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣))) |
241 | 239, 240 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)) ∘ ◡((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣))) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣))) |
242 | 232, 241 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)) ∘ (𝑢𝐻𝑣)) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣))) |
243 | 242 | mpoeq3dva 7330 |
. . . . . . 7
⊢ (𝜑 → (𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆 ↦ (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)) ∘ (𝑢𝐻𝑣))) = (𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆 ↦ ( I ↾ (𝑢(Hom ‘𝑌)𝑣)))) |
244 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑢, 𝑣〉 → ((Hom ‘𝑌)‘𝑧) = ((Hom ‘𝑌)‘〈𝑢, 𝑣〉)) |
245 | | df-ov 7258 |
. . . . . . . . . 10
⊢ (𝑢(Hom ‘𝑌)𝑣) = ((Hom ‘𝑌)‘〈𝑢, 𝑣〉) |
246 | 244, 245 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑢, 𝑣〉 → ((Hom ‘𝑌)‘𝑧) = (𝑢(Hom ‘𝑌)𝑣)) |
247 | 246 | reseq2d 5880 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑢, 𝑣〉 → ( I ↾ ((Hom ‘𝑌)‘𝑧)) = ( I ↾ (𝑢(Hom ‘𝑌)𝑣))) |
248 | 247 | mpompt 7366 |
. . . . . . 7
⊢ (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧))) = (𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆 ↦ ( I ↾ (𝑢(Hom ‘𝑌)𝑣))) |
249 | 243, 248 | eqtr4di 2797 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆 ↦ (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)) ∘ (𝑢𝐻𝑣))) = (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧)))) |
250 | 230, 249 | opeq12d 4809 |
. . . . 5
⊢ (𝜑 → 〈(𝐹 ∘ ◡𝐹), (𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆 ↦ (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)) ∘ (𝑢𝐻𝑣)))〉 = 〈( I ↾ 𝑆), (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧)))〉) |
251 | 52, 205, 51 | cofuval2 17518 |
. . . . 5
⊢ (𝜑 → (〈𝐹, 𝐺〉 ∘func
〈◡𝐹, 𝐻〉) = 〈(𝐹 ∘ ◡𝐹), (𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆 ↦ (((◡𝐹‘𝑢)𝐺(◡𝐹‘𝑣)) ∘ (𝑢𝐻𝑣)))〉) |
252 | | eqid 2738 |
. . . . . 6
⊢
(idfunc‘𝑌) = (idfunc‘𝑌) |
253 | 252, 52, 64, 32 | idfuval 17507 |
. . . . 5
⊢ (𝜑 →
(idfunc‘𝑌) = 〈( I ↾ 𝑆), (𝑧 ∈ (𝑆 × 𝑆) ↦ ( I ↾ ((Hom ‘𝑌)‘𝑧)))〉) |
254 | 250, 251,
253 | 3eqtr4d 2788 |
. . . 4
⊢ (𝜑 → (〈𝐹, 𝐺〉 ∘func
〈◡𝐹, 𝐻〉) =
(idfunc‘𝑌)) |
255 | 57, 58, 59, 210, 63, 65, 63, 214, 212 | catcco 17736 |
. . . 4
⊢ (𝜑 → (〈𝐹, 𝐺〉(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)〈◡𝐹, 𝐻〉) = (〈𝐹, 𝐺〉 ∘func
〈◡𝐹, 𝐻〉)) |
256 | 57, 58, 216, 252, 59, 63 | catcid 17738 |
. . . 4
⊢ (𝜑 → ((Id‘𝐶)‘𝑌) = (idfunc‘𝑌)) |
257 | 254, 255,
256 | 3eqtr4d 2788 |
. . 3
⊢ (𝜑 → (〈𝐹, 𝐺〉(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)〈◡𝐹, 𝐻〉) = ((Id‘𝐶)‘𝑌)) |
258 | 58, 219, 210, 216, 220, 222, 63, 65, 226, 224 | issect2 17383 |
. . 3
⊢ (𝜑 → (〈◡𝐹, 𝐻〉(𝑌(Sect‘𝐶)𝑋)〈𝐹, 𝐺〉 ↔ (〈𝐹, 𝐺〉(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)〈◡𝐹, 𝐻〉) = ((Id‘𝐶)‘𝑌))) |
259 | 257, 258 | mpbird 256 |
. 2
⊢ (𝜑 → 〈◡𝐹, 𝐻〉(𝑌(Sect‘𝐶)𝑋)〈𝐹, 𝐺〉) |
260 | | catcisolem.i |
. . 3
⊢ 𝐼 = (Inv‘𝐶) |
261 | 58, 260, 222, 65, 63, 220 | isinv 17389 |
. 2
⊢ (𝜑 → (〈𝐹, 𝐺〉(𝑋𝐼𝑌)〈◡𝐹, 𝐻〉 ↔ (〈𝐹, 𝐺〉(𝑋(Sect‘𝐶)𝑌)〈◡𝐹, 𝐻〉 ∧ 〈◡𝐹, 𝐻〉(𝑌(Sect‘𝐶)𝑋)〈𝐹, 𝐺〉))) |
262 | 228, 259,
261 | mpbir2and 709 |
1
⊢ (𝜑 → 〈𝐹, 𝐺〉(𝑋𝐼𝑌)〈◡𝐹, 𝐻〉) |