MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthmon Structured version   Visualization version   GIF version

Theorem fthmon 17897
Description: A faithful functor reflects monomorphisms. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthmon.b 𝐵 = (Base‘𝐶)
fthmon.h 𝐻 = (Hom ‘𝐶)
fthmon.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthmon.x (𝜑𝑋𝐵)
fthmon.y (𝜑𝑌𝐵)
fthmon.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
fthmon.m 𝑀 = (Mono‘𝐶)
fthmon.n 𝑁 = (Mono‘𝐷)
fthmon.1 (𝜑 → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑁(𝐹𝑌)))
Assertion
Ref Expression
fthmon (𝜑𝑅 ∈ (𝑋𝑀𝑌))

Proof of Theorem fthmon
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fthmon.r . 2 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
2 eqid 2730 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2730 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
4 eqid 2730 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
5 fthmon.n . . . . . 6 𝑁 = (Mono‘𝐷)
6 fthmon.f . . . . . . . . . . 11 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
7 fthfunc 17877 . . . . . . . . . . . 12 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
87ssbri 5154 . . . . . . . . . . 11 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
96, 8syl 17 . . . . . . . . . 10 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
10 df-br 5110 . . . . . . . . . 10 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylib 218 . . . . . . . . 9 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
12 funcrcl 17831 . . . . . . . . 9 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1311, 12syl 17 . . . . . . . 8 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1413simprd 495 . . . . . . 7 (𝜑𝐷 ∈ Cat)
1514adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝐷 ∈ Cat)
16 fthmon.b . . . . . . . 8 𝐵 = (Base‘𝐶)
179adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝐹(𝐶 Func 𝐷)𝐺)
1816, 2, 17funcf1 17834 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝐹:𝐵⟶(Base‘𝐷))
19 fthmon.x . . . . . . . 8 (𝜑𝑋𝐵)
2019adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑋𝐵)
2118, 20ffvelcdmd 7059 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝐹𝑋) ∈ (Base‘𝐷))
22 fthmon.y . . . . . . . 8 (𝜑𝑌𝐵)
2322adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑌𝐵)
2418, 23ffvelcdmd 7059 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝐹𝑌) ∈ (Base‘𝐷))
25 simpr1 1195 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑧𝐵)
2618, 25ffvelcdmd 7059 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝐹𝑧) ∈ (Base‘𝐷))
27 fthmon.1 . . . . . . 7 (𝜑 → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑁(𝐹𝑌)))
2827adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑁(𝐹𝑌)))
29 fthmon.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
3016, 29, 3, 17, 25, 20funcf2 17836 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝑧𝐺𝑋):(𝑧𝐻𝑋)⟶((𝐹𝑧)(Hom ‘𝐷)(𝐹𝑋)))
31 simpr2 1196 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑓 ∈ (𝑧𝐻𝑋))
3230, 31ffvelcdmd 7059 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑧𝐺𝑋)‘𝑓) ∈ ((𝐹𝑧)(Hom ‘𝐷)(𝐹𝑋)))
33 simpr3 1197 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋))
3430, 33ffvelcdmd 7059 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑧𝐺𝑋)‘𝑔) ∈ ((𝐹𝑧)(Hom ‘𝐷)(𝐹𝑋)))
352, 3, 4, 5, 15, 21, 24, 26, 28, 32, 34moni 17704 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑓)) = (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑔)) ↔ ((𝑧𝐺𝑋)‘𝑓) = ((𝑧𝐺𝑋)‘𝑔)))
36 eqid 2730 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
371adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑅 ∈ (𝑋𝐻𝑌))
3816, 29, 36, 4, 17, 25, 20, 23, 31, 37funcco 17839 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓)) = (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑓)))
3916, 29, 36, 4, 17, 25, 20, 23, 33, 37funcco 17839 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑔)))
4038, 39eqeq12d 2746 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓)) = ((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) ↔ (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑓)) = (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑔))))
416adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝐹(𝐶 Faith 𝐷)𝐺)
4213simpld 494 . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
4342adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat)
4416, 29, 36, 43, 25, 20, 23, 31, 37catcocl 17652 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) ∈ (𝑧𝐻𝑌))
4516, 29, 36, 43, 25, 20, 23, 33, 37catcocl 17652 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) ∈ (𝑧𝐻𝑌))
4616, 29, 3, 41, 25, 23, 44, 45fthi 17888 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓)) = ((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) ↔ (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔)))
4740, 46bitr3d 281 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑓)) = (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑔)) ↔ (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔)))
4816, 29, 3, 41, 25, 20, 31, 33fthi 17888 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (((𝑧𝐺𝑋)‘𝑓) = ((𝑧𝐺𝑋)‘𝑔) ↔ 𝑓 = 𝑔))
4935, 47, 483bitr3d 309 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) ↔ 𝑓 = 𝑔))
5049biimpd 229 . . 3 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) → 𝑓 = 𝑔))
5150ralrimivvva 3184 . 2 (𝜑 → ∀𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋)∀𝑔 ∈ (𝑧𝐻𝑋)((𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) → 𝑓 = 𝑔))
52 fthmon.m . . 3 𝑀 = (Mono‘𝐶)
5316, 29, 36, 52, 42, 19, 22ismon2 17702 . 2 (𝜑 → (𝑅 ∈ (𝑋𝑀𝑌) ↔ (𝑅 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋)∀𝑔 ∈ (𝑧𝐻𝑋)((𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) → 𝑓 = 𝑔))))
541, 51, 53mpbir2and 713 1 (𝜑𝑅 ∈ (𝑋𝑀𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cop 4597   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  compcco 17238  Catccat 17631  Monocmon 17696   Func cfunc 17822   Faith cfth 17873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-mon 17698  df-func 17826  df-fth 17875
This theorem is referenced by:  fthepi  17898
  Copyright terms: Public domain W3C validator