MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthmon Structured version   Visualization version   GIF version

Theorem fthmon 17942
Description: A faithful functor reflects monomorphisms. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthmon.b 𝐵 = (Base‘𝐶)
fthmon.h 𝐻 = (Hom ‘𝐶)
fthmon.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthmon.x (𝜑𝑋𝐵)
fthmon.y (𝜑𝑌𝐵)
fthmon.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
fthmon.m 𝑀 = (Mono‘𝐶)
fthmon.n 𝑁 = (Mono‘𝐷)
fthmon.1 (𝜑 → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑁(𝐹𝑌)))
Assertion
Ref Expression
fthmon (𝜑𝑅 ∈ (𝑋𝑀𝑌))

Proof of Theorem fthmon
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fthmon.r . 2 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
2 eqid 2735 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2735 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
4 eqid 2735 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
5 fthmon.n . . . . . 6 𝑁 = (Mono‘𝐷)
6 fthmon.f . . . . . . . . . . 11 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
7 fthfunc 17922 . . . . . . . . . . . 12 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
87ssbri 5164 . . . . . . . . . . 11 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
96, 8syl 17 . . . . . . . . . 10 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
10 df-br 5120 . . . . . . . . . 10 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylib 218 . . . . . . . . 9 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
12 funcrcl 17876 . . . . . . . . 9 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1311, 12syl 17 . . . . . . . 8 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1413simprd 495 . . . . . . 7 (𝜑𝐷 ∈ Cat)
1514adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝐷 ∈ Cat)
16 fthmon.b . . . . . . . 8 𝐵 = (Base‘𝐶)
179adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝐹(𝐶 Func 𝐷)𝐺)
1816, 2, 17funcf1 17879 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝐹:𝐵⟶(Base‘𝐷))
19 fthmon.x . . . . . . . 8 (𝜑𝑋𝐵)
2019adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑋𝐵)
2118, 20ffvelcdmd 7075 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝐹𝑋) ∈ (Base‘𝐷))
22 fthmon.y . . . . . . . 8 (𝜑𝑌𝐵)
2322adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑌𝐵)
2418, 23ffvelcdmd 7075 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝐹𝑌) ∈ (Base‘𝐷))
25 simpr1 1195 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑧𝐵)
2618, 25ffvelcdmd 7075 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝐹𝑧) ∈ (Base‘𝐷))
27 fthmon.1 . . . . . . 7 (𝜑 → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑁(𝐹𝑌)))
2827adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑁(𝐹𝑌)))
29 fthmon.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
3016, 29, 3, 17, 25, 20funcf2 17881 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝑧𝐺𝑋):(𝑧𝐻𝑋)⟶((𝐹𝑧)(Hom ‘𝐷)(𝐹𝑋)))
31 simpr2 1196 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑓 ∈ (𝑧𝐻𝑋))
3230, 31ffvelcdmd 7075 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑧𝐺𝑋)‘𝑓) ∈ ((𝐹𝑧)(Hom ‘𝐷)(𝐹𝑋)))
33 simpr3 1197 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋))
3430, 33ffvelcdmd 7075 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑧𝐺𝑋)‘𝑔) ∈ ((𝐹𝑧)(Hom ‘𝐷)(𝐹𝑋)))
352, 3, 4, 5, 15, 21, 24, 26, 28, 32, 34moni 17749 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑓)) = (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑔)) ↔ ((𝑧𝐺𝑋)‘𝑓) = ((𝑧𝐺𝑋)‘𝑔)))
36 eqid 2735 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
371adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝑅 ∈ (𝑋𝐻𝑌))
3816, 29, 36, 4, 17, 25, 20, 23, 31, 37funcco 17884 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓)) = (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑓)))
3916, 29, 36, 4, 17, 25, 20, 23, 33, 37funcco 17884 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑔)))
4038, 39eqeq12d 2751 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓)) = ((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) ↔ (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑓)) = (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑔))))
416adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝐹(𝐶 Faith 𝐷)𝐺)
4213simpld 494 . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
4342adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat)
4416, 29, 36, 43, 25, 20, 23, 31, 37catcocl 17697 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) ∈ (𝑧𝐻𝑌))
4516, 29, 36, 43, 25, 20, 23, 33, 37catcocl 17697 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) ∈ (𝑧𝐻𝑌))
4616, 29, 3, 41, 25, 23, 44, 45fthi 17933 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓)) = ((𝑧𝐺𝑌)‘(𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) ↔ (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔)))
4740, 46bitr3d 281 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑓)) = (((𝑋𝐺𝑌)‘𝑅)(⟨(𝐹𝑧), (𝐹𝑋)⟩(comp‘𝐷)(𝐹𝑌))((𝑧𝐺𝑋)‘𝑔)) ↔ (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔)))
4816, 29, 3, 41, 25, 20, 31, 33fthi 17933 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → (((𝑧𝐺𝑋)‘𝑓) = ((𝑧𝐺𝑋)‘𝑔) ↔ 𝑓 = 𝑔))
4935, 47, 483bitr3d 309 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) ↔ 𝑓 = 𝑔))
5049biimpd 229 . . 3 ((𝜑 ∧ (𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋) ∧ 𝑔 ∈ (𝑧𝐻𝑋))) → ((𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) → 𝑓 = 𝑔))
5150ralrimivvva 3190 . 2 (𝜑 → ∀𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋)∀𝑔 ∈ (𝑧𝐻𝑋)((𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) → 𝑓 = 𝑔))
52 fthmon.m . . 3 𝑀 = (Mono‘𝐶)
5316, 29, 36, 52, 42, 19, 22ismon2 17747 . 2 (𝜑 → (𝑅 ∈ (𝑋𝑀𝑌) ↔ (𝑅 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑓 ∈ (𝑧𝐻𝑋)∀𝑔 ∈ (𝑧𝐻𝑋)((𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑓) = (𝑅(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) → 𝑓 = 𝑔))))
541, 51, 53mpbir2and 713 1 (𝜑𝑅 ∈ (𝑋𝑀𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cop 4607   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282  compcco 17283  Catccat 17676  Monocmon 17741   Func cfunc 17867   Faith cfth 17918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842  df-ixp 8912  df-cat 17680  df-mon 17743  df-func 17871  df-fth 17920
This theorem is referenced by:  fthepi  17943
  Copyright terms: Public domain W3C validator