Step | Hyp | Ref
| Expression |
1 | | fthmon.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
2 | | ffthiso.s |
. . 3
⊢ 𝐼 = (Iso‘𝐶) |
3 | | ffthiso.t |
. . 3
⊢ 𝐽 = (Iso‘𝐷) |
4 | | fthmon.f |
. . . . 5
⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
5 | | fthfunc 17414 |
. . . . . 6
⊢ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷) |
6 | 5 | ssbri 5098 |
. . . . 5
⊢ (𝐹(𝐶 Faith 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
7 | 4, 6 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
8 | 7 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ (𝑋𝐼𝑌)) → 𝐹(𝐶 Func 𝐷)𝐺) |
9 | | fthmon.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
10 | 9 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ (𝑋𝐼𝑌)) → 𝑋 ∈ 𝐵) |
11 | | fthmon.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
12 | 11 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ (𝑋𝐼𝑌)) → 𝑌 ∈ 𝐵) |
13 | | simpr 488 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ (𝑋𝐼𝑌)) → 𝑅 ∈ (𝑋𝐼𝑌)) |
14 | 1, 2, 3, 8, 10, 12, 13 | funciso 17380 |
. 2
⊢ ((𝜑 ∧ 𝑅 ∈ (𝑋𝐼𝑌)) → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
15 | | eqid 2737 |
. . . 4
⊢
(Inv‘𝐶) =
(Inv‘𝐶) |
16 | | df-br 5054 |
. . . . . . . 8
⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
17 | 7, 16 | sylib 221 |
. . . . . . 7
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
18 | | funcrcl 17369 |
. . . . . . 7
⊢
(〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
19 | 17, 18 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
20 | 19 | simpld 498 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Cat) |
21 | 20 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝐶 ∈ Cat) |
22 | 9 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑋 ∈ 𝐵) |
23 | 11 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑌 ∈ 𝐵) |
24 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝐷) =
(Base‘𝐷) |
25 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Inv‘𝐷) =
(Inv‘𝐷) |
26 | 19 | simprd 499 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ Cat) |
27 | 1, 24, 7 | funcf1 17372 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐷)) |
28 | 27, 9 | ffvelrnd 6905 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
29 | 27, 11 | ffvelrnd 6905 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐷)) |
30 | 24, 25, 26, 28, 29, 3 | isoval 17270 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = dom ((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))) |
31 | 30 | eleq2d 2823 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌)))) |
32 | 31 | biimpa 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → ((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))) |
33 | 24, 25, 26, 28, 29 | invfun 17269 |
. . . . . . . . . 10
⊢ (𝜑 → Fun ((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))) |
34 | 33 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → Fun ((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))) |
35 | | funfvbrb 6871 |
. . . . . . . . 9
⊢ (Fun
((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌)) → (((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))(((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)))) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → (((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))(((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)))) |
37 | 32, 36 | mpbid 235 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → ((𝑋𝐺𝑌)‘𝑅)((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))(((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅))) |
38 | 37 | ad2antrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → ((𝑋𝐺𝑌)‘𝑅)((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))(((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅))) |
39 | | simpr 488 |
. . . . . 6
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) |
40 | 38, 39 | breqtrd 5079 |
. . . . 5
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → ((𝑋𝐺𝑌)‘𝑅)((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑓)) |
41 | | fthmon.h |
. . . . . 6
⊢ 𝐻 = (Hom ‘𝐶) |
42 | 4 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝐹(𝐶 Faith 𝐷)𝐺) |
43 | | fthmon.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) |
44 | 43 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅 ∈ (𝑋𝐻𝑌)) |
45 | | simplr 769 |
. . . . . 6
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑓 ∈ (𝑌𝐻𝑋)) |
46 | 1, 41, 42, 22, 23, 44, 45, 15, 25 | fthinv 17433 |
. . . . 5
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → (𝑅(𝑋(Inv‘𝐶)𝑌)𝑓 ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑓))) |
47 | 40, 46 | mpbird 260 |
. . . 4
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅(𝑋(Inv‘𝐶)𝑌)𝑓) |
48 | 1, 15, 21, 22, 23, 2, 47 | inviso1 17271 |
. . 3
⊢ ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅 ∈ (𝑋𝐼𝑌)) |
49 | | eqid 2737 |
. . . 4
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
50 | | ffthiso.f |
. . . . 5
⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
51 | 50 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → 𝐹(𝐶 Full 𝐷)𝐺) |
52 | 11 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → 𝑌 ∈ 𝐵) |
53 | 9 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → 𝑋 ∈ 𝐵) |
54 | 24, 49, 3, 26, 29, 28 | isohom 17281 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝑌)𝐽(𝐹‘𝑋)) ⊆ ((𝐹‘𝑌)(Hom ‘𝐷)(𝐹‘𝑋))) |
55 | 54 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → ((𝐹‘𝑌)𝐽(𝐹‘𝑋)) ⊆ ((𝐹‘𝑌)(Hom ‘𝐷)(𝐹‘𝑋))) |
56 | 24, 25, 26, 28, 29, 3 | invf 17273 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌)):((𝐹‘𝑋)𝐽(𝐹‘𝑌))⟶((𝐹‘𝑌)𝐽(𝐹‘𝑋))) |
57 | 56 | ffvelrnda 6904 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) ∈ ((𝐹‘𝑌)𝐽(𝐹‘𝑋))) |
58 | 55, 57 | sseldd 3902 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → (((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) ∈ ((𝐹‘𝑌)(Hom ‘𝐷)(𝐹‘𝑋))) |
59 | 1, 49, 41, 51, 52, 53, 58 | fulli 17420 |
. . 3
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → ∃𝑓 ∈ (𝑌𝐻𝑋)(((𝐹‘𝑋)(Inv‘𝐷)(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) |
60 | 48, 59 | r19.29a 3208 |
. 2
⊢ ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → 𝑅 ∈ (𝑋𝐼𝑌)) |
61 | 14, 60 | impbida 801 |
1
⊢ (𝜑 → (𝑅 ∈ (𝑋𝐼𝑌) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |