MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffthiso Structured version   Visualization version   GIF version

Theorem ffthiso 17436
Description: A fully faithful functor reflects isomorphisms. Corollary 3.32 of [Adamek] p. 35. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthmon.b 𝐵 = (Base‘𝐶)
fthmon.h 𝐻 = (Hom ‘𝐶)
fthmon.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthmon.x (𝜑𝑋𝐵)
fthmon.y (𝜑𝑌𝐵)
fthmon.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
ffthiso.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
ffthiso.s 𝐼 = (Iso‘𝐶)
ffthiso.t 𝐽 = (Iso‘𝐷)
Assertion
Ref Expression
ffthiso (𝜑 → (𝑅 ∈ (𝑋𝐼𝑌) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))))

Proof of Theorem ffthiso
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fthmon.b . . 3 𝐵 = (Base‘𝐶)
2 ffthiso.s . . 3 𝐼 = (Iso‘𝐶)
3 ffthiso.t . . 3 𝐽 = (Iso‘𝐷)
4 fthmon.f . . . . 5 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
5 fthfunc 17414 . . . . . 6 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
65ssbri 5098 . . . . 5 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
74, 6syl 17 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
87adantr 484 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝐹(𝐶 Func 𝐷)𝐺)
9 fthmon.x . . . 4 (𝜑𝑋𝐵)
109adantr 484 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑋𝐵)
11 fthmon.y . . . 4 (𝜑𝑌𝐵)
1211adantr 484 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑌𝐵)
13 simpr 488 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑅 ∈ (𝑋𝐼𝑌))
141, 2, 3, 8, 10, 12, 13funciso 17380 . 2 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
15 eqid 2737 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
16 df-br 5054 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
177, 16sylib 221 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
18 funcrcl 17369 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2019simpld 498 . . . . 5 (𝜑𝐶 ∈ Cat)
2120ad3antrrr 730 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝐶 ∈ Cat)
229ad3antrrr 730 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑋𝐵)
2311ad3antrrr 730 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑌𝐵)
24 eqid 2737 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
25 eqid 2737 . . . . . . . . . . 11 (Inv‘𝐷) = (Inv‘𝐷)
2619simprd 499 . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
271, 24, 7funcf1 17372 . . . . . . . . . . . 12 (𝜑𝐹:𝐵⟶(Base‘𝐷))
2827, 9ffvelrnd 6905 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
2927, 11ffvelrnd 6905 . . . . . . . . . . 11 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
3024, 25, 26, 28, 29, 3isoval 17270 . . . . . . . . . 10 (𝜑 → ((𝐹𝑋)𝐽(𝐹𝑌)) = dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3130eleq2d 2823 . . . . . . . . 9 (𝜑 → (((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))))
3231biimpa 480 . . . . . . . 8 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3324, 25, 26, 28, 29invfun 17269 . . . . . . . . . 10 (𝜑 → Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3433adantr 484 . . . . . . . . 9 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
35 funfvbrb 6871 . . . . . . . . 9 (Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) → (((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅))))
3634, 35syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅))))
3732, 36mpbid 235 . . . . . . 7 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)))
3837ad2antrr 726 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)))
39 simpr 488 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓))
4038, 39breqtrd 5079 . . . . 5 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑓))
41 fthmon.h . . . . . 6 𝐻 = (Hom ‘𝐶)
424ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝐹(𝐶 Faith 𝐷)𝐺)
43 fthmon.r . . . . . . 7 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
4443ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅 ∈ (𝑋𝐻𝑌))
45 simplr 769 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑓 ∈ (𝑌𝐻𝑋))
461, 41, 42, 22, 23, 44, 45, 15, 25fthinv 17433 . . . . 5 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → (𝑅(𝑋(Inv‘𝐶)𝑌)𝑓 ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑓)))
4740, 46mpbird 260 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅(𝑋(Inv‘𝐶)𝑌)𝑓)
481, 15, 21, 22, 23, 2, 47inviso1 17271 . . 3 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅 ∈ (𝑋𝐼𝑌))
49 eqid 2737 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
50 ffthiso.f . . . . 5 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
5150adantr 484 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝐹(𝐶 Full 𝐷)𝐺)
5211adantr 484 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑌𝐵)
539adantr 484 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑋𝐵)
5424, 49, 3, 26, 29, 28isohom 17281 . . . . . 6 (𝜑 → ((𝐹𝑌)𝐽(𝐹𝑋)) ⊆ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
5554adantr 484 . . . . 5 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝐹𝑌)𝐽(𝐹𝑋)) ⊆ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
5624, 25, 26, 28, 29, 3invf 17273 . . . . . 6 (𝜑 → ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))⟶((𝐹𝑌)𝐽(𝐹𝑋)))
5756ffvelrnda 6904 . . . . 5 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) ∈ ((𝐹𝑌)𝐽(𝐹𝑋)))
5855, 57sseldd 3902 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) ∈ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
591, 49, 41, 51, 52, 53, 58fulli 17420 . . 3 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ∃𝑓 ∈ (𝑌𝐻𝑋)(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓))
6048, 59r19.29a 3208 . 2 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑅 ∈ (𝑋𝐼𝑌))
6114, 60impbida 801 1 (𝜑 → (𝑅 ∈ (𝑋𝐼𝑌) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wss 3866  cop 4547   class class class wbr 5053  dom cdm 5551  Fun wfun 6374  cfv 6380  (class class class)co 7213  Basecbs 16760  Hom chom 16813  Catccat 17167  Invcinv 17250  Isociso 17251   Func cfunc 17360   Full cful 17409   Faith cfth 17410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-map 8510  df-ixp 8579  df-cat 17171  df-cid 17172  df-sect 17252  df-inv 17253  df-iso 17254  df-func 17364  df-full 17411  df-fth 17412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator