Step | Hyp | Ref
| Expression |
1 | | fthmon.b |
. . 3
β’ π΅ = (BaseβπΆ) |
2 | | ffthiso.s |
. . 3
β’ πΌ = (IsoβπΆ) |
3 | | ffthiso.t |
. . 3
β’ π½ = (Isoβπ·) |
4 | | fthmon.f |
. . . . 5
β’ (π β πΉ(πΆ Faith π·)πΊ) |
5 | | fthfunc 17729 |
. . . . . 6
β’ (πΆ Faith π·) β (πΆ Func π·) |
6 | 5 | ssbri 5149 |
. . . . 5
β’ (πΉ(πΆ Faith π·)πΊ β πΉ(πΆ Func π·)πΊ) |
7 | 4, 6 | syl 17 |
. . . 4
β’ (π β πΉ(πΆ Func π·)πΊ) |
8 | 7 | adantr 482 |
. . 3
β’ ((π β§ π
β (ππΌπ)) β πΉ(πΆ Func π·)πΊ) |
9 | | fthmon.x |
. . . 4
β’ (π β π β π΅) |
10 | 9 | adantr 482 |
. . 3
β’ ((π β§ π
β (ππΌπ)) β π β π΅) |
11 | | fthmon.y |
. . . 4
β’ (π β π β π΅) |
12 | 11 | adantr 482 |
. . 3
β’ ((π β§ π
β (ππΌπ)) β π β π΅) |
13 | | simpr 486 |
. . 3
β’ ((π β§ π
β (ππΌπ)) β π
β (ππΌπ)) |
14 | 1, 2, 3, 8, 10, 12, 13 | funciso 17695 |
. 2
β’ ((π β§ π
β (ππΌπ)) β ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) |
15 | | eqid 2738 |
. . . 4
β’
(InvβπΆ) =
(InvβπΆ) |
16 | | df-br 5105 |
. . . . . . . 8
β’ (πΉ(πΆ Func π·)πΊ β β¨πΉ, πΊβ© β (πΆ Func π·)) |
17 | 7, 16 | sylib 217 |
. . . . . . 7
β’ (π β β¨πΉ, πΊβ© β (πΆ Func π·)) |
18 | | funcrcl 17684 |
. . . . . . 7
β’
(β¨πΉ, πΊβ© β (πΆ Func π·) β (πΆ β Cat β§ π· β Cat)) |
19 | 17, 18 | syl 17 |
. . . . . 6
β’ (π β (πΆ β Cat β§ π· β Cat)) |
20 | 19 | simpld 496 |
. . . . 5
β’ (π β πΆ β Cat) |
21 | 20 | ad3antrrr 729 |
. . . 4
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β πΆ β Cat) |
22 | 9 | ad3antrrr 729 |
. . . 4
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β π β π΅) |
23 | 11 | ad3antrrr 729 |
. . . 4
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β π β π΅) |
24 | | eqid 2738 |
. . . . . . . . . . 11
β’
(Baseβπ·) =
(Baseβπ·) |
25 | | eqid 2738 |
. . . . . . . . . . 11
β’
(Invβπ·) =
(Invβπ·) |
26 | 19 | simprd 497 |
. . . . . . . . . . 11
β’ (π β π· β Cat) |
27 | 1, 24, 7 | funcf1 17687 |
. . . . . . . . . . . 12
β’ (π β πΉ:π΅βΆ(Baseβπ·)) |
28 | 27, 9 | ffvelcdmd 7031 |
. . . . . . . . . . 11
β’ (π β (πΉβπ) β (Baseβπ·)) |
29 | 27, 11 | ffvelcdmd 7031 |
. . . . . . . . . . 11
β’ (π β (πΉβπ) β (Baseβπ·)) |
30 | 24, 25, 26, 28, 29, 3 | isoval 17583 |
. . . . . . . . . 10
β’ (π β ((πΉβπ)π½(πΉβπ)) = dom ((πΉβπ)(Invβπ·)(πΉβπ))) |
31 | 30 | eleq2d 2824 |
. . . . . . . . 9
β’ (π β (((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ)) β ((ππΊπ)βπ
) β dom ((πΉβπ)(Invβπ·)(πΉβπ)))) |
32 | 31 | biimpa 478 |
. . . . . . . 8
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β ((ππΊπ)βπ
) β dom ((πΉβπ)(Invβπ·)(πΉβπ))) |
33 | 24, 25, 26, 28, 29 | invfun 17582 |
. . . . . . . . . 10
β’ (π β Fun ((πΉβπ)(Invβπ·)(πΉβπ))) |
34 | 33 | adantr 482 |
. . . . . . . . 9
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β Fun ((πΉβπ)(Invβπ·)(πΉβπ))) |
35 | | funfvbrb 6997 |
. . . . . . . . 9
β’ (Fun
((πΉβπ)(Invβπ·)(πΉβπ)) β (((ππΊπ)βπ
) β dom ((πΉβπ)(Invβπ·)(πΉβπ)) β ((ππΊπ)βπ
)((πΉβπ)(Invβπ·)(πΉβπ))(((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)))) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β (((ππΊπ)βπ
) β dom ((πΉβπ)(Invβπ·)(πΉβπ)) β ((ππΊπ)βπ
)((πΉβπ)(Invβπ·)(πΉβπ))(((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)))) |
37 | 32, 36 | mpbid 231 |
. . . . . . 7
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β ((ππΊπ)βπ
)((πΉβπ)(Invβπ·)(πΉβπ))(((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
))) |
38 | 37 | ad2antrr 725 |
. . . . . 6
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β ((ππΊπ)βπ
)((πΉβπ)(Invβπ·)(πΉβπ))(((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
))) |
39 | | simpr 486 |
. . . . . 6
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) |
40 | 38, 39 | breqtrd 5130 |
. . . . 5
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β ((ππΊπ)βπ
)((πΉβπ)(Invβπ·)(πΉβπ))((ππΊπ)βπ)) |
41 | | fthmon.h |
. . . . . 6
β’ π» = (Hom βπΆ) |
42 | 4 | ad3antrrr 729 |
. . . . . 6
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β πΉ(πΆ Faith π·)πΊ) |
43 | | fthmon.r |
. . . . . . 7
β’ (π β π
β (ππ»π)) |
44 | 43 | ad3antrrr 729 |
. . . . . 6
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β π
β (ππ»π)) |
45 | | simplr 768 |
. . . . . 6
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β π β (ππ»π)) |
46 | 1, 41, 42, 22, 23, 44, 45, 15, 25 | fthinv 17748 |
. . . . 5
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β (π
(π(InvβπΆ)π)π β ((ππΊπ)βπ
)((πΉβπ)(Invβπ·)(πΉβπ))((ππΊπ)βπ))) |
47 | 40, 46 | mpbird 257 |
. . . 4
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β π
(π(InvβπΆ)π)π) |
48 | 1, 15, 21, 22, 23, 2, 47 | inviso1 17584 |
. . 3
β’ ((((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β§ π β (ππ»π)) β§ (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) β π
β (ππΌπ)) |
49 | | eqid 2738 |
. . . 4
β’ (Hom
βπ·) = (Hom
βπ·) |
50 | | ffthiso.f |
. . . . 5
β’ (π β πΉ(πΆ Full π·)πΊ) |
51 | 50 | adantr 482 |
. . . 4
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β πΉ(πΆ Full π·)πΊ) |
52 | 11 | adantr 482 |
. . . 4
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β π β π΅) |
53 | 9 | adantr 482 |
. . . 4
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β π β π΅) |
54 | 24, 49, 3, 26, 29, 28 | isohom 17594 |
. . . . . 6
β’ (π β ((πΉβπ)π½(πΉβπ)) β ((πΉβπ)(Hom βπ·)(πΉβπ))) |
55 | 54 | adantr 482 |
. . . . 5
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β ((πΉβπ)π½(πΉβπ)) β ((πΉβπ)(Hom βπ·)(πΉβπ))) |
56 | 24, 25, 26, 28, 29, 3 | invf 17586 |
. . . . . 6
β’ (π β ((πΉβπ)(Invβπ·)(πΉβπ)):((πΉβπ)π½(πΉβπ))βΆ((πΉβπ)π½(πΉβπ))) |
57 | 56 | ffvelcdmda 7030 |
. . . . 5
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) β ((πΉβπ)π½(πΉβπ))) |
58 | 55, 57 | sseldd 3944 |
. . . 4
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β (((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) β ((πΉβπ)(Hom βπ·)(πΉβπ))) |
59 | 1, 49, 41, 51, 52, 53, 58 | fulli 17735 |
. . 3
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β βπ β (ππ»π)(((πΉβπ)(Invβπ·)(πΉβπ))β((ππΊπ)βπ
)) = ((ππΊπ)βπ)) |
60 | 48, 59 | r19.29a 3158 |
. 2
β’ ((π β§ ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ))) β π
β (ππΌπ)) |
61 | 14, 60 | impbida 800 |
1
β’ (π β (π
β (ππΌπ) β ((ππΊπ)βπ
) β ((πΉβπ)π½(πΉβπ)))) |