MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffthiso Structured version   Visualization version   GIF version

Theorem ffthiso 16792
Description: A fully faithful functor reflects isomorphisms. Corollary 3.32 of [Adamek] p. 35. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthmon.b 𝐵 = (Base‘𝐶)
fthmon.h 𝐻 = (Hom ‘𝐶)
fthmon.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthmon.x (𝜑𝑋𝐵)
fthmon.y (𝜑𝑌𝐵)
fthmon.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
ffthiso.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
ffthiso.s 𝐼 = (Iso‘𝐶)
ffthiso.t 𝐽 = (Iso‘𝐷)
Assertion
Ref Expression
ffthiso (𝜑 → (𝑅 ∈ (𝑋𝐼𝑌) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))))

Proof of Theorem ffthiso
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fthmon.b . . 3 𝐵 = (Base‘𝐶)
2 ffthiso.s . . 3 𝐼 = (Iso‘𝐶)
3 ffthiso.t . . 3 𝐽 = (Iso‘𝐷)
4 fthmon.f . . . . 5 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
5 fthfunc 16770 . . . . . 6 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
65ssbri 4831 . . . . 5 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
74, 6syl 17 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
87adantr 466 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝐹(𝐶 Func 𝐷)𝐺)
9 fthmon.x . . . 4 (𝜑𝑋𝐵)
109adantr 466 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑋𝐵)
11 fthmon.y . . . 4 (𝜑𝑌𝐵)
1211adantr 466 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑌𝐵)
13 simpr 471 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑅 ∈ (𝑋𝐼𝑌))
141, 2, 3, 8, 10, 12, 13funciso 16737 . 2 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
15 eqid 2771 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
16 df-br 4787 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
177, 16sylib 208 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
18 funcrcl 16726 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2019simpld 482 . . . . 5 (𝜑𝐶 ∈ Cat)
2120ad3antrrr 709 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝐶 ∈ Cat)
229ad3antrrr 709 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑋𝐵)
2311ad3antrrr 709 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑌𝐵)
24 eqid 2771 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
25 eqid 2771 . . . . . . . . . . 11 (Inv‘𝐷) = (Inv‘𝐷)
2619simprd 483 . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
271, 24, 7funcf1 16729 . . . . . . . . . . . 12 (𝜑𝐹:𝐵⟶(Base‘𝐷))
2827, 9ffvelrnd 6502 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
2927, 11ffvelrnd 6502 . . . . . . . . . . 11 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
3024, 25, 26, 28, 29, 3isoval 16628 . . . . . . . . . 10 (𝜑 → ((𝐹𝑋)𝐽(𝐹𝑌)) = dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3130eleq2d 2836 . . . . . . . . 9 (𝜑 → (((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))))
3231biimpa 462 . . . . . . . 8 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3324, 25, 26, 28, 29invfun 16627 . . . . . . . . . 10 (𝜑 → Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3433adantr 466 . . . . . . . . 9 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
35 funfvbrb 6472 . . . . . . . . 9 (Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) → (((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅))))
3634, 35syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅))))
3732, 36mpbid 222 . . . . . . 7 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)))
3837ad2antrr 705 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)))
39 simpr 471 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓))
4038, 39breqtrd 4812 . . . . 5 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑓))
41 fthmon.h . . . . . 6 𝐻 = (Hom ‘𝐶)
424ad3antrrr 709 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝐹(𝐶 Faith 𝐷)𝐺)
43 fthmon.r . . . . . . 7 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
4443ad3antrrr 709 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅 ∈ (𝑋𝐻𝑌))
45 simplr 752 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑓 ∈ (𝑌𝐻𝑋))
461, 41, 42, 22, 23, 44, 45, 15, 25fthinv 16789 . . . . 5 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → (𝑅(𝑋(Inv‘𝐶)𝑌)𝑓 ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑓)))
4740, 46mpbird 247 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅(𝑋(Inv‘𝐶)𝑌)𝑓)
481, 15, 21, 22, 23, 2, 47inviso1 16629 . . 3 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅 ∈ (𝑋𝐼𝑌))
49 eqid 2771 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
50 ffthiso.f . . . . 5 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
5150adantr 466 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝐹(𝐶 Full 𝐷)𝐺)
5211adantr 466 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑌𝐵)
539adantr 466 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑋𝐵)
5424, 49, 3, 26, 29, 28isohom 16639 . . . . . 6 (𝜑 → ((𝐹𝑌)𝐽(𝐹𝑋)) ⊆ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
5554adantr 466 . . . . 5 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝐹𝑌)𝐽(𝐹𝑋)) ⊆ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
5624, 25, 26, 28, 29, 3invf 16631 . . . . . 6 (𝜑 → ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))⟶((𝐹𝑌)𝐽(𝐹𝑋)))
5756ffvelrnda 6501 . . . . 5 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) ∈ ((𝐹𝑌)𝐽(𝐹𝑋)))
5855, 57sseldd 3753 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) ∈ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
591, 49, 41, 51, 52, 53, 58fulli 16776 . . 3 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ∃𝑓 ∈ (𝑌𝐻𝑋)(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓))
6048, 59r19.29a 3226 . 2 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑅 ∈ (𝑋𝐼𝑌))
6114, 60impbida 802 1 (𝜑 → (𝑅 ∈ (𝑋𝐼𝑌) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wss 3723  cop 4322   class class class wbr 4786  dom cdm 5249  Fun wfun 6023  cfv 6029  (class class class)co 6792  Basecbs 16060  Hom chom 16156  Catccat 16528  Invcinv 16608  Isociso 16609   Func cfunc 16717   Full cful 16765   Faith cfth 16766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7315  df-2nd 7316  df-map 8011  df-ixp 8063  df-cat 16532  df-cid 16533  df-sect 16610  df-inv 16611  df-iso 16612  df-func 16721  df-full 16767  df-fth 16768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator