MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffthiso Structured version   Visualization version   GIF version

Theorem ffthiso 16800
Description: A fully faithful functor reflects isomorphisms. Corollary 3.32 of [Adamek] p. 35. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthmon.b 𝐵 = (Base‘𝐶)
fthmon.h 𝐻 = (Hom ‘𝐶)
fthmon.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthmon.x (𝜑𝑋𝐵)
fthmon.y (𝜑𝑌𝐵)
fthmon.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
ffthiso.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
ffthiso.s 𝐼 = (Iso‘𝐶)
ffthiso.t 𝐽 = (Iso‘𝐷)
Assertion
Ref Expression
ffthiso (𝜑 → (𝑅 ∈ (𝑋𝐼𝑌) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))))

Proof of Theorem ffthiso
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fthmon.b . . 3 𝐵 = (Base‘𝐶)
2 ffthiso.s . . 3 𝐼 = (Iso‘𝐶)
3 ffthiso.t . . 3 𝐽 = (Iso‘𝐷)
4 fthmon.f . . . . 5 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
5 fthfunc 16778 . . . . . 6 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
65ssbri 4900 . . . . 5 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
74, 6syl 17 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
87adantr 468 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝐹(𝐶 Func 𝐷)𝐺)
9 fthmon.x . . . 4 (𝜑𝑋𝐵)
109adantr 468 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑋𝐵)
11 fthmon.y . . . 4 (𝜑𝑌𝐵)
1211adantr 468 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑌𝐵)
13 simpr 473 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑅 ∈ (𝑋𝐼𝑌))
141, 2, 3, 8, 10, 12, 13funciso 16745 . 2 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
15 eqid 2817 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
16 df-br 4856 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
177, 16sylib 209 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
18 funcrcl 16734 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2019simpld 484 . . . . 5 (𝜑𝐶 ∈ Cat)
2120ad3antrrr 712 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝐶 ∈ Cat)
229ad3antrrr 712 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑋𝐵)
2311ad3antrrr 712 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑌𝐵)
24 eqid 2817 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
25 eqid 2817 . . . . . . . . . . 11 (Inv‘𝐷) = (Inv‘𝐷)
2619simprd 485 . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
271, 24, 7funcf1 16737 . . . . . . . . . . . 12 (𝜑𝐹:𝐵⟶(Base‘𝐷))
2827, 9ffvelrnd 6589 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
2927, 11ffvelrnd 6589 . . . . . . . . . . 11 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
3024, 25, 26, 28, 29, 3isoval 16636 . . . . . . . . . 10 (𝜑 → ((𝐹𝑋)𝐽(𝐹𝑌)) = dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3130eleq2d 2882 . . . . . . . . 9 (𝜑 → (((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))))
3231biimpa 464 . . . . . . . 8 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3324, 25, 26, 28, 29invfun 16635 . . . . . . . . . 10 (𝜑 → Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3433adantr 468 . . . . . . . . 9 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
35 funfvbrb 6559 . . . . . . . . 9 (Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) → (((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅))))
3634, 35syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅))))
3732, 36mpbid 223 . . . . . . 7 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)))
3837ad2antrr 708 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)))
39 simpr 473 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓))
4038, 39breqtrd 4881 . . . . 5 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑓))
41 fthmon.h . . . . . 6 𝐻 = (Hom ‘𝐶)
424ad3antrrr 712 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝐹(𝐶 Faith 𝐷)𝐺)
43 fthmon.r . . . . . . 7 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
4443ad3antrrr 712 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅 ∈ (𝑋𝐻𝑌))
45 simplr 776 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑓 ∈ (𝑌𝐻𝑋))
461, 41, 42, 22, 23, 44, 45, 15, 25fthinv 16797 . . . . 5 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → (𝑅(𝑋(Inv‘𝐶)𝑌)𝑓 ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑓)))
4740, 46mpbird 248 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅(𝑋(Inv‘𝐶)𝑌)𝑓)
481, 15, 21, 22, 23, 2, 47inviso1 16637 . . 3 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅 ∈ (𝑋𝐼𝑌))
49 eqid 2817 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
50 ffthiso.f . . . . 5 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
5150adantr 468 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝐹(𝐶 Full 𝐷)𝐺)
5211adantr 468 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑌𝐵)
539adantr 468 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑋𝐵)
5424, 49, 3, 26, 29, 28isohom 16647 . . . . . 6 (𝜑 → ((𝐹𝑌)𝐽(𝐹𝑋)) ⊆ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
5554adantr 468 . . . . 5 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝐹𝑌)𝐽(𝐹𝑋)) ⊆ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
5624, 25, 26, 28, 29, 3invf 16639 . . . . . 6 (𝜑 → ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))⟶((𝐹𝑌)𝐽(𝐹𝑋)))
5756ffvelrnda 6588 . . . . 5 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) ∈ ((𝐹𝑌)𝐽(𝐹𝑋)))
5855, 57sseldd 3810 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) ∈ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
591, 49, 41, 51, 52, 53, 58fulli 16784 . . 3 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ∃𝑓 ∈ (𝑌𝐻𝑋)(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓))
6048, 59r19.29a 3277 . 2 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑅 ∈ (𝑋𝐼𝑌))
6114, 60impbida 826 1 (𝜑 → (𝑅 ∈ (𝑋𝐼𝑌) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2157  wss 3780  cop 4387   class class class wbr 4855  dom cdm 5322  Fun wfun 6102  cfv 6108  (class class class)co 6881  Basecbs 16075  Hom chom 16171  Catccat 16536  Invcinv 16616  Isociso 16617   Func cfunc 16725   Full cful 16773   Faith cfth 16774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5230  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-1st 7405  df-2nd 7406  df-map 8101  df-ixp 8153  df-cat 16540  df-cid 16541  df-sect 16618  df-inv 16619  df-iso 16620  df-func 16729  df-full 16775  df-fth 16776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator