MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssimaexg Structured version   Visualization version   GIF version

Theorem ssimaexg 6854
Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007.)
Assertion
Ref Expression
ssimaexg ((𝐴𝐶 ∧ Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ssimaexg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imaeq2 5965 . . . . . 6 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
21sseq2d 3953 . . . . 5 (𝑦 = 𝐴 → (𝐵 ⊆ (𝐹𝑦) ↔ 𝐵 ⊆ (𝐹𝐴)))
32anbi2d 629 . . . 4 (𝑦 = 𝐴 → ((Fun 𝐹𝐵 ⊆ (𝐹𝑦)) ↔ (Fun 𝐹𝐵 ⊆ (𝐹𝐴))))
4 sseq2 3947 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
54anbi1d 630 . . . . 5 (𝑦 = 𝐴 → ((𝑥𝑦𝐵 = (𝐹𝑥)) ↔ (𝑥𝐴𝐵 = (𝐹𝑥))))
65exbidv 1924 . . . 4 (𝑦 = 𝐴 → (∃𝑥(𝑥𝑦𝐵 = (𝐹𝑥)) ↔ ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥))))
73, 6imbi12d 345 . . 3 (𝑦 = 𝐴 → (((Fun 𝐹𝐵 ⊆ (𝐹𝑦)) → ∃𝑥(𝑥𝑦𝐵 = (𝐹𝑥))) ↔ ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))))
8 vex 3436 . . . 4 𝑦 ∈ V
98ssimaex 6853 . . 3 ((Fun 𝐹𝐵 ⊆ (𝐹𝑦)) → ∃𝑥(𝑥𝑦𝐵 = (𝐹𝑥)))
107, 9vtoclg 3505 . 2 (𝐴𝐶 → ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥))))
11103impib 1115 1 ((𝐴𝐶 ∧ Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wss 3887  cima 5592  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  tgrest  22310  cmpfi  22559  zarclsint  31822
  Copyright terms: Public domain W3C validator