![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssimaexg | Structured version Visualization version GIF version |
Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007.) |
Ref | Expression |
---|---|
ssimaexg | ⊢ ((𝐴 ∈ 𝐶 ∧ Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq2 6055 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝐹 “ 𝑦) = (𝐹 “ 𝐴)) | |
2 | 1 | sseq2d 4014 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐵 ⊆ (𝐹 “ 𝑦) ↔ 𝐵 ⊆ (𝐹 “ 𝐴))) |
3 | 2 | anbi2d 628 | . . . 4 ⊢ (𝑦 = 𝐴 → ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) ↔ (Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)))) |
4 | sseq2 4008 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐴)) | |
5 | 4 | anbi1d 629 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ (𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
6 | 5 | exbidv 1923 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
7 | 3, 6 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐴 → (((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) → ∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥))) ↔ ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))))) |
8 | vex 3477 | . . . 4 ⊢ 𝑦 ∈ V | |
9 | 8 | ssimaex 6976 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) → ∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥))) |
10 | 7, 9 | vtoclg 3542 | . 2 ⊢ (𝐴 ∈ 𝐶 → ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
11 | 10 | 3impib 1115 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ⊆ wss 3948 “ cima 5679 Fun wfun 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: tgrest 22983 cmpfi 23232 zarclsint 33317 |
Copyright terms: Public domain | W3C validator |