Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsint Structured version   Visualization version   GIF version

Theorem zarclsint 31818
Description: The intersection of a family of closed sets is closed in the Zariski topology. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypothesis
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarclsint ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑆,𝑖   𝑖,𝑉
Allowed substitution hints:   𝑆(𝑗)   𝑉(𝑗)

Proof of Theorem zarclsint
Dummy variables 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19793 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21ad4antr 729 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑅 ∈ Ring)
3 elpwi 4548 . . . . . . . . . . . 12 (𝑟 ∈ 𝒫 (LIdeal‘𝑅) → 𝑟 ⊆ (LIdeal‘𝑅))
43adantl 482 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) → 𝑟 ⊆ (LIdeal‘𝑅))
54adantr 481 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ (LIdeal‘𝑅))
65sselda 3926 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖𝑟) → 𝑖 ∈ (LIdeal‘𝑅))
7 eqid 2740 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2740 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
97, 8lidlss 20479 . . . . . . . . 9 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
106, 9syl 17 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖𝑟) → 𝑖 ⊆ (Base‘𝑅))
1110ralrimiva 3110 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ∀𝑖𝑟 𝑖 ⊆ (Base‘𝑅))
12 unissb 4879 . . . . . . 7 ( 𝑟 ⊆ (Base‘𝑅) ↔ ∀𝑖𝑟 𝑖 ⊆ (Base‘𝑅))
1311, 12sylibr 233 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ (Base‘𝑅))
14 eqid 2740 . . . . . . 7 (RSpan‘𝑅) = (RSpan‘𝑅)
1514, 7, 8rspcl 20491 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑟 ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ 𝑟) ∈ (LIdeal‘𝑅))
162, 13, 15syl2anc 584 . . . . 5 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ((RSpan‘𝑅)‘ 𝑟) ∈ (LIdeal‘𝑅))
17 sseq1 3951 . . . . . . . 8 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → (𝑖𝑗 ↔ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗))
1817rabbidv 3413 . . . . . . 7 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
1918eqeq2d 2751 . . . . . 6 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → ( 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗}))
2019adantl 482 . . . . 5 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖 = ((RSpan‘𝑅)‘ 𝑟)) → ( 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗}))
21 simpr 485 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = (𝑉𝑟))
2221inteqd 4890 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = (𝑉𝑟))
23 zarclsx.1 . . . . . . . . . 10 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
2423funmpt2 6471 . . . . . . . . 9 Fun 𝑉
2524a1i 11 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → Fun 𝑉)
26 fvex 6784 . . . . . . . . . . 11 (PrmIdeal‘𝑅) ∈ V
2726rabex 5260 . . . . . . . . . 10 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
2827, 23dmmpti 6575 . . . . . . . . 9 dom 𝑉 = (LIdeal‘𝑅)
295, 28sseqtrrdi 3977 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ dom 𝑉)
30 intimafv 31039 . . . . . . . 8 ((Fun 𝑉𝑟 ⊆ dom 𝑉) → (𝑉𝑟) = 𝑙𝑟 (𝑉𝑙))
3125, 29, 30syl2anc 584 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → (𝑉𝑟) = 𝑙𝑟 (𝑉𝑙))
3222, 31eqtrd 2780 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = 𝑙𝑟 (𝑉𝑙))
33 simplr 766 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 = (𝑉𝑟))
34 simpr 485 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑟 = ∅)
3534imaeq2d 5968 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → (𝑉𝑟) = (𝑉 “ ∅))
36 ima0 5984 . . . . . . . . . . 11 (𝑉 “ ∅) = ∅
3735, 36eqtrdi 2796 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → (𝑉𝑟) = ∅)
3833, 37eqtrd 2780 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 = ∅)
39 simp-4r 781 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 ≠ ∅)
4039neneqd 2950 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → ¬ 𝑆 = ∅)
4138, 40pm2.65da 814 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ¬ 𝑟 = ∅)
4241neqned 2952 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ≠ ∅)
4323, 14zarclsiin 31817 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑟 ≠ ∅) → 𝑙𝑟 (𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ 𝑟)))
442, 5, 42, 43syl3anc 1370 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑙𝑟 (𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ 𝑟)))
4523a1i 11 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
4618adantl 482 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖 = ((RSpan‘𝑅)‘ 𝑟)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
4726rabex 5260 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗} ∈ V
4847a1i 11 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗} ∈ V)
4945, 46, 16, 48fvmptd 6879 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → (𝑉‘((RSpan‘𝑅)‘ 𝑟)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
5032, 44, 493eqtrd 2784 . . . . 5 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
5116, 20, 50rspcedvd 3564 . . . 4 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
52 intex 5265 . . . . . . . 8 (𝑆 ≠ ∅ ↔ 𝑆 ∈ V)
5352biimpi 215 . . . . . . 7 (𝑆 ≠ ∅ → 𝑆 ∈ V)
54533ad2ant3 1134 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ V)
5523elrnmpt 5864 . . . . . 6 ( 𝑆 ∈ V → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5654, 55syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5756ad5ant123 1363 . . . 4 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5851, 57mpbird 256 . . 3 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 ∈ ran 𝑉)
59 fvexd 6786 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (LIdeal‘𝑅) ∈ V)
6024a1i 11 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → Fun 𝑉)
61 simplr 766 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ran 𝑉)
6227, 23fnmpti 6574 . . . . . . . 8 𝑉 Fn (LIdeal‘𝑅)
63 fnima 6561 . . . . . . . 8 (𝑉 Fn (LIdeal‘𝑅) → (𝑉 “ (LIdeal‘𝑅)) = ran 𝑉)
6462, 63ax-mp 5 . . . . . . 7 (𝑉 “ (LIdeal‘𝑅)) = ran 𝑉
6561, 64sseqtrrdi 3977 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (𝑉 “ (LIdeal‘𝑅)))
66 ssimaexg 6851 . . . . . 6 (((LIdeal‘𝑅) ∈ V ∧ Fun 𝑉𝑆 ⊆ (𝑉 “ (LIdeal‘𝑅))) → ∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
6759, 60, 65, 66syl3anc 1370 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
68 vex 3435 . . . . . . . . . 10 𝑟 ∈ V
6968a1i 11 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ∈ V)
70 simpr 485 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ⊆ (LIdeal‘𝑅))
7169, 70elpwd 4547 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ∈ 𝒫 (LIdeal‘𝑅))
7271ex 413 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (𝑟 ⊆ (LIdeal‘𝑅) → 𝑟 ∈ 𝒫 (LIdeal‘𝑅)))
7372anim1d 611 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ((𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)) → (𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟))))
7473eximdv 1924 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)) → ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟))))
7567, 74mpd 15 . . . 4 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
76 df-rex 3072 . . . 4 (∃𝑟 ∈ 𝒫 (LIdeal‘𝑅)𝑆 = (𝑉𝑟) ↔ ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
7775, 76sylibr 233 . . 3 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟 ∈ 𝒫 (LIdeal‘𝑅)𝑆 = (𝑉𝑟))
7858, 77r19.29a 3220 . 2 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
79783impa 1109 1 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wex 1786  wcel 2110  wne 2945  wral 3066  wrex 3067  {crab 3070  Vcvv 3431  wss 3892  c0 4262  𝒫 cpw 4539   cuni 4845   cint 4885   ciin 4931  cmpt 5162  dom cdm 5590  ran crn 5591  cima 5593  Fun wfun 6426   Fn wfn 6427  cfv 6432  Basecbs 16910  Ringcrg 19781  CRingccrg 19782  LIdealclidl 20430  RSpancrsp 20431  PrmIdealcprmidl 31606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-sca 16976  df-vsca 16977  df-ip 16978  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-sbg 18580  df-subg 18750  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-subrg 20020  df-lmod 20123  df-lss 20192  df-lsp 20232  df-sra 20432  df-rgmod 20433  df-lidl 20434  df-rsp 20435  df-prmidl 31607
This theorem is referenced by:  zartopn  31821
  Copyright terms: Public domain W3C validator