Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsint Structured version   Visualization version   GIF version

Theorem zarclsint 31822
Description: The intersection of a family of closed sets is closed in the Zariski topology. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypothesis
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarclsint ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑆,𝑖   𝑖,𝑉
Allowed substitution hints:   𝑆(𝑗)   𝑉(𝑗)

Proof of Theorem zarclsint
Dummy variables 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19795 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21ad4antr 729 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑅 ∈ Ring)
3 elpwi 4542 . . . . . . . . . . . 12 (𝑟 ∈ 𝒫 (LIdeal‘𝑅) → 𝑟 ⊆ (LIdeal‘𝑅))
43adantl 482 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) → 𝑟 ⊆ (LIdeal‘𝑅))
54adantr 481 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ (LIdeal‘𝑅))
65sselda 3921 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖𝑟) → 𝑖 ∈ (LIdeal‘𝑅))
7 eqid 2738 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2738 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
97, 8lidlss 20481 . . . . . . . . 9 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
106, 9syl 17 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖𝑟) → 𝑖 ⊆ (Base‘𝑅))
1110ralrimiva 3103 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ∀𝑖𝑟 𝑖 ⊆ (Base‘𝑅))
12 unissb 4873 . . . . . . 7 ( 𝑟 ⊆ (Base‘𝑅) ↔ ∀𝑖𝑟 𝑖 ⊆ (Base‘𝑅))
1311, 12sylibr 233 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ (Base‘𝑅))
14 eqid 2738 . . . . . . 7 (RSpan‘𝑅) = (RSpan‘𝑅)
1514, 7, 8rspcl 20493 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑟 ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ 𝑟) ∈ (LIdeal‘𝑅))
162, 13, 15syl2anc 584 . . . . 5 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ((RSpan‘𝑅)‘ 𝑟) ∈ (LIdeal‘𝑅))
17 sseq1 3946 . . . . . . . 8 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → (𝑖𝑗 ↔ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗))
1817rabbidv 3414 . . . . . . 7 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
1918eqeq2d 2749 . . . . . 6 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → ( 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗}))
2019adantl 482 . . . . 5 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖 = ((RSpan‘𝑅)‘ 𝑟)) → ( 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗}))
21 simpr 485 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = (𝑉𝑟))
2221inteqd 4884 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = (𝑉𝑟))
23 zarclsx.1 . . . . . . . . . 10 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
2423funmpt2 6473 . . . . . . . . 9 Fun 𝑉
2524a1i 11 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → Fun 𝑉)
26 fvex 6787 . . . . . . . . . . 11 (PrmIdeal‘𝑅) ∈ V
2726rabex 5256 . . . . . . . . . 10 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
2827, 23dmmpti 6577 . . . . . . . . 9 dom 𝑉 = (LIdeal‘𝑅)
295, 28sseqtrrdi 3972 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ dom 𝑉)
30 intimafv 31043 . . . . . . . 8 ((Fun 𝑉𝑟 ⊆ dom 𝑉) → (𝑉𝑟) = 𝑙𝑟 (𝑉𝑙))
3125, 29, 30syl2anc 584 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → (𝑉𝑟) = 𝑙𝑟 (𝑉𝑙))
3222, 31eqtrd 2778 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = 𝑙𝑟 (𝑉𝑙))
33 simplr 766 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 = (𝑉𝑟))
34 simpr 485 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑟 = ∅)
3534imaeq2d 5969 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → (𝑉𝑟) = (𝑉 “ ∅))
36 ima0 5985 . . . . . . . . . . 11 (𝑉 “ ∅) = ∅
3735, 36eqtrdi 2794 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → (𝑉𝑟) = ∅)
3833, 37eqtrd 2778 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 = ∅)
39 simp-4r 781 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 ≠ ∅)
4039neneqd 2948 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → ¬ 𝑆 = ∅)
4138, 40pm2.65da 814 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ¬ 𝑟 = ∅)
4241neqned 2950 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ≠ ∅)
4323, 14zarclsiin 31821 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑟 ≠ ∅) → 𝑙𝑟 (𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ 𝑟)))
442, 5, 42, 43syl3anc 1370 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑙𝑟 (𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ 𝑟)))
4523a1i 11 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
4618adantl 482 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖 = ((RSpan‘𝑅)‘ 𝑟)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
4726rabex 5256 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗} ∈ V
4847a1i 11 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗} ∈ V)
4945, 46, 16, 48fvmptd 6882 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → (𝑉‘((RSpan‘𝑅)‘ 𝑟)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
5032, 44, 493eqtrd 2782 . . . . 5 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
5116, 20, 50rspcedvd 3563 . . . 4 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
52 intex 5261 . . . . . . . 8 (𝑆 ≠ ∅ ↔ 𝑆 ∈ V)
5352biimpi 215 . . . . . . 7 (𝑆 ≠ ∅ → 𝑆 ∈ V)
54533ad2ant3 1134 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ V)
5523elrnmpt 5865 . . . . . 6 ( 𝑆 ∈ V → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5654, 55syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5756ad5ant123 1363 . . . 4 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5851, 57mpbird 256 . . 3 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 ∈ ran 𝑉)
59 fvexd 6789 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (LIdeal‘𝑅) ∈ V)
6024a1i 11 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → Fun 𝑉)
61 simplr 766 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ran 𝑉)
6227, 23fnmpti 6576 . . . . . . . 8 𝑉 Fn (LIdeal‘𝑅)
63 fnima 6563 . . . . . . . 8 (𝑉 Fn (LIdeal‘𝑅) → (𝑉 “ (LIdeal‘𝑅)) = ran 𝑉)
6462, 63ax-mp 5 . . . . . . 7 (𝑉 “ (LIdeal‘𝑅)) = ran 𝑉
6561, 64sseqtrrdi 3972 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (𝑉 “ (LIdeal‘𝑅)))
66 ssimaexg 6854 . . . . . 6 (((LIdeal‘𝑅) ∈ V ∧ Fun 𝑉𝑆 ⊆ (𝑉 “ (LIdeal‘𝑅))) → ∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
6759, 60, 65, 66syl3anc 1370 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
68 vex 3436 . . . . . . . . . 10 𝑟 ∈ V
6968a1i 11 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ∈ V)
70 simpr 485 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ⊆ (LIdeal‘𝑅))
7169, 70elpwd 4541 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ∈ 𝒫 (LIdeal‘𝑅))
7271ex 413 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (𝑟 ⊆ (LIdeal‘𝑅) → 𝑟 ∈ 𝒫 (LIdeal‘𝑅)))
7372anim1d 611 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ((𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)) → (𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟))))
7473eximdv 1920 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)) → ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟))))
7567, 74mpd 15 . . . 4 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
76 df-rex 3070 . . . 4 (∃𝑟 ∈ 𝒫 (LIdeal‘𝑅)𝑆 = (𝑉𝑟) ↔ ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
7775, 76sylibr 233 . . 3 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟 ∈ 𝒫 (LIdeal‘𝑅)𝑆 = (𝑉𝑟))
7858, 77r19.29a 3218 . 2 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
79783impa 1109 1 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   cint 4879   ciin 4925  cmpt 5157  dom cdm 5589  ran crn 5590  cima 5592  Fun wfun 6427   Fn wfn 6428  cfv 6433  Basecbs 16912  Ringcrg 19783  CRingccrg 19784  LIdealclidl 20432  RSpancrsp 20433  PrmIdealcprmidl 31610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-prmidl 31611
This theorem is referenced by:  zartopn  31825
  Copyright terms: Public domain W3C validator