Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsint Structured version   Visualization version   GIF version

Theorem zarclsint 31328
Description: The intersection of a family of closed sets is closed in the Zariski topology. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypothesis
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarclsint ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑆,𝑖   𝑖,𝑉
Allowed substitution hints:   𝑆(𝑗)   𝑉(𝑗)

Proof of Theorem zarclsint
Dummy variables 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19362 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21ad4antr 732 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑅 ∈ Ring)
3 elpwi 4496 . . . . . . . . . . . 12 (𝑟 ∈ 𝒫 (LIdeal‘𝑅) → 𝑟 ⊆ (LIdeal‘𝑅))
43adantl 486 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) → 𝑟 ⊆ (LIdeal‘𝑅))
54adantr 485 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ (LIdeal‘𝑅))
65sselda 3888 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖𝑟) → 𝑖 ∈ (LIdeal‘𝑅))
7 eqid 2759 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2759 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
97, 8lidlss 20036 . . . . . . . . 9 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
106, 9syl 17 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖𝑟) → 𝑖 ⊆ (Base‘𝑅))
1110ralrimiva 3111 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ∀𝑖𝑟 𝑖 ⊆ (Base‘𝑅))
12 unissb 4825 . . . . . . 7 ( 𝑟 ⊆ (Base‘𝑅) ↔ ∀𝑖𝑟 𝑖 ⊆ (Base‘𝑅))
1311, 12sylibr 237 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ (Base‘𝑅))
14 eqid 2759 . . . . . . 7 (RSpan‘𝑅) = (RSpan‘𝑅)
1514, 7, 8rspcl 20048 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑟 ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ 𝑟) ∈ (LIdeal‘𝑅))
162, 13, 15syl2anc 588 . . . . 5 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ((RSpan‘𝑅)‘ 𝑟) ∈ (LIdeal‘𝑅))
17 sseq1 3913 . . . . . . . 8 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → (𝑖𝑗 ↔ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗))
1817rabbidv 3390 . . . . . . 7 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
1918eqeq2d 2770 . . . . . 6 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → ( 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗}))
2019adantl 486 . . . . 5 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖 = ((RSpan‘𝑅)‘ 𝑟)) → ( 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗}))
21 simpr 489 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = (𝑉𝑟))
2221inteqd 4836 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = (𝑉𝑟))
23 zarclsx.1 . . . . . . . . . 10 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
2423funmpt2 6367 . . . . . . . . 9 Fun 𝑉
2524a1i 11 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → Fun 𝑉)
26 fvex 6664 . . . . . . . . . . 11 (PrmIdeal‘𝑅) ∈ V
2726rabex 5195 . . . . . . . . . 10 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
2827, 23dmmpti 6468 . . . . . . . . 9 dom 𝑉 = (LIdeal‘𝑅)
295, 28sseqtrrdi 3939 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ dom 𝑉)
30 intimafv 30552 . . . . . . . 8 ((Fun 𝑉𝑟 ⊆ dom 𝑉) → (𝑉𝑟) = 𝑙𝑟 (𝑉𝑙))
3125, 29, 30syl2anc 588 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → (𝑉𝑟) = 𝑙𝑟 (𝑉𝑙))
3222, 31eqtrd 2794 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = 𝑙𝑟 (𝑉𝑙))
33 simplr 769 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 = (𝑉𝑟))
34 simpr 489 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑟 = ∅)
3534imaeq2d 5894 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → (𝑉𝑟) = (𝑉 “ ∅))
36 ima0 5910 . . . . . . . . . . 11 (𝑉 “ ∅) = ∅
3735, 36eqtrdi 2810 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → (𝑉𝑟) = ∅)
3833, 37eqtrd 2794 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 = ∅)
39 simp-4r 784 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 ≠ ∅)
4039neneqd 2954 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → ¬ 𝑆 = ∅)
4138, 40pm2.65da 817 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ¬ 𝑟 = ∅)
4241neqned 2956 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ≠ ∅)
4323, 14zarclsiin 31327 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑟 ≠ ∅) → 𝑙𝑟 (𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ 𝑟)))
442, 5, 42, 43syl3anc 1369 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑙𝑟 (𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ 𝑟)))
4523a1i 11 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
4618adantl 486 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖 = ((RSpan‘𝑅)‘ 𝑟)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
4726rabex 5195 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗} ∈ V
4847a1i 11 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗} ∈ V)
4945, 46, 16, 48fvmptd 6759 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → (𝑉‘((RSpan‘𝑅)‘ 𝑟)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
5032, 44, 493eqtrd 2798 . . . . 5 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
5116, 20, 50rspcedvd 3542 . . . 4 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
52 intex 5200 . . . . . . . 8 (𝑆 ≠ ∅ ↔ 𝑆 ∈ V)
5352biimpi 219 . . . . . . 7 (𝑆 ≠ ∅ → 𝑆 ∈ V)
54533ad2ant3 1133 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ V)
5523elrnmpt 5790 . . . . . 6 ( 𝑆 ∈ V → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5654, 55syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5756ad5ant123 1362 . . . 4 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5851, 57mpbird 260 . . 3 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 ∈ ran 𝑉)
59 fvexd 6666 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (LIdeal‘𝑅) ∈ V)
6024a1i 11 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → Fun 𝑉)
61 simplr 769 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ran 𝑉)
6227, 23fnmpti 6467 . . . . . . . 8 𝑉 Fn (LIdeal‘𝑅)
63 fnima 6454 . . . . . . . 8 (𝑉 Fn (LIdeal‘𝑅) → (𝑉 “ (LIdeal‘𝑅)) = ran 𝑉)
6462, 63ax-mp 5 . . . . . . 7 (𝑉 “ (LIdeal‘𝑅)) = ran 𝑉
6561, 64sseqtrrdi 3939 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (𝑉 “ (LIdeal‘𝑅)))
66 ssimaexg 6731 . . . . . 6 (((LIdeal‘𝑅) ∈ V ∧ Fun 𝑉𝑆 ⊆ (𝑉 “ (LIdeal‘𝑅))) → ∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
6759, 60, 65, 66syl3anc 1369 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
68 vex 3411 . . . . . . . . . 10 𝑟 ∈ V
6968a1i 11 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ∈ V)
70 simpr 489 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ⊆ (LIdeal‘𝑅))
7169, 70elpwd 4495 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ∈ 𝒫 (LIdeal‘𝑅))
7271ex 417 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (𝑟 ⊆ (LIdeal‘𝑅) → 𝑟 ∈ 𝒫 (LIdeal‘𝑅)))
7372anim1d 614 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ((𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)) → (𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟))))
7473eximdv 1919 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)) → ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟))))
7567, 74mpd 15 . . . 4 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
76 df-rex 3074 . . . 4 (∃𝑟 ∈ 𝒫 (LIdeal‘𝑅)𝑆 = (𝑉𝑟) ↔ ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
7775, 76sylibr 237 . . 3 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟 ∈ 𝒫 (LIdeal‘𝑅)𝑆 = (𝑉𝑟))
7858, 77r19.29a 3211 . 2 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
79783impa 1108 1 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wex 1782  wcel 2112  wne 2949  wral 3068  wrex 3069  {crab 3072  Vcvv 3407  wss 3854  c0 4221  𝒫 cpw 4487   cuni 4791   cint 4831   ciin 4877  cmpt 5105  dom cdm 5517  ran crn 5518  cima 5520  Fun wfun 6322   Fn wfn 6323  cfv 6328  Basecbs 16526  Ringcrg 19350  CRingccrg 19351  LIdealclidl 19995  RSpancrsp 19996  PrmIdealcprmidl 31116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-sca 16624  df-vsca 16625  df-ip 16626  df-0g 16758  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-grp 18157  df-minusg 18158  df-sbg 18159  df-subg 18328  df-mgp 19293  df-ur 19305  df-ring 19352  df-cring 19353  df-subrg 19586  df-lmod 19689  df-lss 19757  df-lsp 19797  df-sra 19997  df-rgmod 19998  df-lidl 19999  df-rsp 20000  df-prmidl 31117
This theorem is referenced by:  zartopn  31331
  Copyright terms: Public domain W3C validator