Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsint Structured version   Visualization version   GIF version

Theorem zarclsint 33903
Description: The intersection of a family of closed sets is closed in the Zariski topology. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypothesis
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarclsint ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑆,𝑖   𝑖,𝑉
Allowed substitution hints:   𝑆(𝑗)   𝑉(𝑗)

Proof of Theorem zarclsint
Dummy variables 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20205 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21ad4antr 732 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑅 ∈ Ring)
3 elpwi 4582 . . . . . . . . . . . 12 (𝑟 ∈ 𝒫 (LIdeal‘𝑅) → 𝑟 ⊆ (LIdeal‘𝑅))
43adantl 481 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) → 𝑟 ⊆ (LIdeal‘𝑅))
54adantr 480 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ (LIdeal‘𝑅))
65sselda 3958 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖𝑟) → 𝑖 ∈ (LIdeal‘𝑅))
7 eqid 2735 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2735 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
97, 8lidlss 21173 . . . . . . . . 9 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
106, 9syl 17 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖𝑟) → 𝑖 ⊆ (Base‘𝑅))
1110ralrimiva 3132 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ∀𝑖𝑟 𝑖 ⊆ (Base‘𝑅))
12 unissb 4915 . . . . . . 7 ( 𝑟 ⊆ (Base‘𝑅) ↔ ∀𝑖𝑟 𝑖 ⊆ (Base‘𝑅))
1311, 12sylibr 234 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ (Base‘𝑅))
14 eqid 2735 . . . . . . 7 (RSpan‘𝑅) = (RSpan‘𝑅)
1514, 7, 8rspcl 21196 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑟 ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ 𝑟) ∈ (LIdeal‘𝑅))
162, 13, 15syl2anc 584 . . . . 5 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ((RSpan‘𝑅)‘ 𝑟) ∈ (LIdeal‘𝑅))
17 sseq1 3984 . . . . . . . 8 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → (𝑖𝑗 ↔ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗))
1817rabbidv 3423 . . . . . . 7 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
1918eqeq2d 2746 . . . . . 6 (𝑖 = ((RSpan‘𝑅)‘ 𝑟) → ( 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗}))
2019adantl 481 . . . . 5 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖 = ((RSpan‘𝑅)‘ 𝑟)) → ( 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗}))
21 simpr 484 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = (𝑉𝑟))
2221inteqd 4927 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = (𝑉𝑟))
23 zarclsx.1 . . . . . . . . . 10 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
2423funmpt2 6575 . . . . . . . . 9 Fun 𝑉
2524a1i 11 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → Fun 𝑉)
26 fvex 6889 . . . . . . . . . . 11 (PrmIdeal‘𝑅) ∈ V
2726rabex 5309 . . . . . . . . . 10 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
2827, 23dmmpti 6682 . . . . . . . . 9 dom 𝑉 = (LIdeal‘𝑅)
295, 28sseqtrrdi 4000 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ⊆ dom 𝑉)
30 intimafv 32688 . . . . . . . 8 ((Fun 𝑉𝑟 ⊆ dom 𝑉) → (𝑉𝑟) = 𝑙𝑟 (𝑉𝑙))
3125, 29, 30syl2anc 584 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → (𝑉𝑟) = 𝑙𝑟 (𝑉𝑙))
3222, 31eqtrd 2770 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = 𝑙𝑟 (𝑉𝑙))
33 simplr 768 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 = (𝑉𝑟))
34 simpr 484 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑟 = ∅)
3534imaeq2d 6047 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → (𝑉𝑟) = (𝑉 “ ∅))
36 ima0 6064 . . . . . . . . . . 11 (𝑉 “ ∅) = ∅
3735, 36eqtrdi 2786 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → (𝑉𝑟) = ∅)
3833, 37eqtrd 2770 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 = ∅)
39 simp-4r 783 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → 𝑆 ≠ ∅)
4039neneqd 2937 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑟 = ∅) → ¬ 𝑆 = ∅)
4138, 40pm2.65da 816 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ¬ 𝑟 = ∅)
4241neqned 2939 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑟 ≠ ∅)
4323, 14zarclsiin 33902 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑟 ≠ ∅) → 𝑙𝑟 (𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ 𝑟)))
442, 5, 42, 43syl3anc 1373 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑙𝑟 (𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ 𝑟)))
4523a1i 11 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
4618adantl 481 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) ∧ 𝑖 = ((RSpan‘𝑅)‘ 𝑟)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
4726rabex 5309 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗} ∈ V
4847a1i 11 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗} ∈ V)
4945, 46, 16, 48fvmptd 6993 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → (𝑉‘((RSpan‘𝑅)‘ 𝑟)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
5032, 44, 493eqtrd 2774 . . . . 5 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘ 𝑟) ⊆ 𝑗})
5116, 20, 50rspcedvd 3603 . . . 4 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
52 intex 5314 . . . . . . . 8 (𝑆 ≠ ∅ ↔ 𝑆 ∈ V)
5352biimpi 216 . . . . . . 7 (𝑆 ≠ ∅ → 𝑆 ∈ V)
54533ad2ant3 1135 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ V)
5523elrnmpt 5938 . . . . . 6 ( 𝑆 ∈ V → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5654, 55syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5756ad5ant123 1366 . . . 4 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → ( 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅) 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5851, 57mpbird 257 . . 3 (((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉𝑟)) → 𝑆 ∈ ran 𝑉)
59 fvexd 6891 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (LIdeal‘𝑅) ∈ V)
6024a1i 11 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → Fun 𝑉)
61 simplr 768 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ran 𝑉)
6227, 23fnmpti 6681 . . . . . . . 8 𝑉 Fn (LIdeal‘𝑅)
63 fnima 6668 . . . . . . . 8 (𝑉 Fn (LIdeal‘𝑅) → (𝑉 “ (LIdeal‘𝑅)) = ran 𝑉)
6462, 63ax-mp 5 . . . . . . 7 (𝑉 “ (LIdeal‘𝑅)) = ran 𝑉
6561, 64sseqtrrdi 4000 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (𝑉 “ (LIdeal‘𝑅)))
66 ssimaexg 6965 . . . . . 6 (((LIdeal‘𝑅) ∈ V ∧ Fun 𝑉𝑆 ⊆ (𝑉 “ (LIdeal‘𝑅))) → ∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
6759, 60, 65, 66syl3anc 1373 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
68 vex 3463 . . . . . . . . . 10 𝑟 ∈ V
6968a1i 11 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ∈ V)
70 simpr 484 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ⊆ (LIdeal‘𝑅))
7169, 70elpwd 4581 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ∈ 𝒫 (LIdeal‘𝑅))
7271ex 412 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (𝑟 ⊆ (LIdeal‘𝑅) → 𝑟 ∈ 𝒫 (LIdeal‘𝑅)))
7372anim1d 611 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ((𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)) → (𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟))))
7473eximdv 1917 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)) → ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟))))
7567, 74mpd 15 . . . 4 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
76 df-rex 3061 . . . 4 (∃𝑟 ∈ 𝒫 (LIdeal‘𝑅)𝑆 = (𝑉𝑟) ↔ ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉𝑟)))
7775, 76sylibr 234 . . 3 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟 ∈ 𝒫 (LIdeal‘𝑅)𝑆 = (𝑉𝑟))
7858, 77r19.29a 3148 . 2 (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
79783impa 1109 1 ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅) → 𝑆 ∈ ran 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  c0 4308  𝒫 cpw 4575   cuni 4883   cint 4922   ciin 4968  cmpt 5201  dom cdm 5654  ran crn 5655  cima 5657  Fun wfun 6525   Fn wfn 6526  cfv 6531  Basecbs 17228  Ringcrg 20193  CRingccrg 20194  LIdealclidl 21167  RSpancrsp 21168  PrmIdealcprmidl 33450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-mgp 20101  df-ur 20142  df-ring 20195  df-cring 20196  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-prmidl 33451
This theorem is referenced by:  zartopn  33906
  Copyright terms: Public domain W3C validator