| Step | Hyp | Ref
| Expression |
| 1 | | crngring 20205 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 2 | 1 | ad4antr 732 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → 𝑅 ∈ Ring) |
| 3 | | elpwi 4582 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ 𝒫
(LIdeal‘𝑅) →
𝑟 ⊆
(LIdeal‘𝑅)) |
| 4 | 3 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) → 𝑟 ⊆ (LIdeal‘𝑅)) |
| 5 | 4 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → 𝑟 ⊆ (LIdeal‘𝑅)) |
| 6 | 5 | sselda 3958 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) ∧ 𝑖 ∈ 𝑟) → 𝑖 ∈ (LIdeal‘𝑅)) |
| 7 | | eqid 2735 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 8 | | eqid 2735 |
. . . . . . . . . 10
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 9 | 7, 8 | lidlss 21173 |
. . . . . . . . 9
⊢ (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅)) |
| 10 | 6, 9 | syl 17 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) ∧ 𝑖 ∈ 𝑟) → 𝑖 ⊆ (Base‘𝑅)) |
| 11 | 10 | ralrimiva 3132 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → ∀𝑖 ∈ 𝑟 𝑖 ⊆ (Base‘𝑅)) |
| 12 | | unissb 4915 |
. . . . . . 7
⊢ (∪ 𝑟
⊆ (Base‘𝑅)
↔ ∀𝑖 ∈
𝑟 𝑖 ⊆ (Base‘𝑅)) |
| 13 | 11, 12 | sylibr 234 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → ∪ 𝑟 ⊆ (Base‘𝑅)) |
| 14 | | eqid 2735 |
. . . . . . 7
⊢
(RSpan‘𝑅) =
(RSpan‘𝑅) |
| 15 | 14, 7, 8 | rspcl 21196 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ ∪ 𝑟
⊆ (Base‘𝑅))
→ ((RSpan‘𝑅)‘∪ 𝑟) ∈ (LIdeal‘𝑅)) |
| 16 | 2, 13, 15 | syl2anc 584 |
. . . . 5
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → ((RSpan‘𝑅)‘∪ 𝑟) ∈ (LIdeal‘𝑅)) |
| 17 | | sseq1 3984 |
. . . . . . . 8
⊢ (𝑖 = ((RSpan‘𝑅)‘∪ 𝑟)
→ (𝑖 ⊆ 𝑗 ↔ ((RSpan‘𝑅)‘∪ 𝑟)
⊆ 𝑗)) |
| 18 | 17 | rabbidv 3423 |
. . . . . . 7
⊢ (𝑖 = ((RSpan‘𝑅)‘∪ 𝑟)
→ {𝑗 ∈
(PrmIdeal‘𝑅) ∣
𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘∪ 𝑟) ⊆ 𝑗}) |
| 19 | 18 | eqeq2d 2746 |
. . . . . 6
⊢ (𝑖 = ((RSpan‘𝑅)‘∪ 𝑟)
→ (∩ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} ↔ ∩ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘∪ 𝑟) ⊆ 𝑗})) |
| 20 | 19 | adantl 481 |
. . . . 5
⊢
((((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) ∧ 𝑖 = ((RSpan‘𝑅)‘∪ 𝑟)) → (∩ 𝑆 =
{𝑗 ∈
(PrmIdeal‘𝑅) ∣
𝑖 ⊆ 𝑗} ↔ ∩ 𝑆 =
{𝑗 ∈
(PrmIdeal‘𝑅) ∣
((RSpan‘𝑅)‘∪ 𝑟) ⊆ 𝑗})) |
| 21 | | simpr 484 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → 𝑆 = (𝑉 “ 𝑟)) |
| 22 | 21 | inteqd 4927 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → ∩ 𝑆 = ∩
(𝑉 “ 𝑟)) |
| 23 | | zarclsx.1 |
. . . . . . . . . 10
⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
| 24 | 23 | funmpt2 6575 |
. . . . . . . . 9
⊢ Fun 𝑉 |
| 25 | 24 | a1i 11 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → Fun 𝑉) |
| 26 | | fvex 6889 |
. . . . . . . . . . 11
⊢
(PrmIdeal‘𝑅)
∈ V |
| 27 | 26 | rabex 5309 |
. . . . . . . . . 10
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} ∈ V |
| 28 | 27, 23 | dmmpti 6682 |
. . . . . . . . 9
⊢ dom 𝑉 = (LIdeal‘𝑅) |
| 29 | 5, 28 | sseqtrrdi 4000 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → 𝑟 ⊆ dom 𝑉) |
| 30 | | intimafv 32688 |
. . . . . . . 8
⊢ ((Fun
𝑉 ∧ 𝑟 ⊆ dom 𝑉) → ∩ (𝑉 “ 𝑟) = ∩ 𝑙 ∈ 𝑟 (𝑉‘𝑙)) |
| 31 | 25, 29, 30 | syl2anc 584 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → ∩ (𝑉 “ 𝑟) = ∩ 𝑙 ∈ 𝑟 (𝑉‘𝑙)) |
| 32 | 22, 31 | eqtrd 2770 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → ∩ 𝑆 = ∩ 𝑙 ∈ 𝑟 (𝑉‘𝑙)) |
| 33 | | simplr 768 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) ∧ 𝑟 = ∅) → 𝑆 = (𝑉 “ 𝑟)) |
| 34 | | simpr 484 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) ∧ 𝑟 = ∅) → 𝑟 = ∅) |
| 35 | 34 | imaeq2d 6047 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) ∧ 𝑟 = ∅) → (𝑉 “ 𝑟) = (𝑉 “ ∅)) |
| 36 | | ima0 6064 |
. . . . . . . . . . 11
⊢ (𝑉 “ ∅) =
∅ |
| 37 | 35, 36 | eqtrdi 2786 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) ∧ 𝑟 = ∅) → (𝑉 “ 𝑟) = ∅) |
| 38 | 33, 37 | eqtrd 2770 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) ∧ 𝑟 = ∅) → 𝑆 = ∅) |
| 39 | | simp-4r 783 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) ∧ 𝑟 = ∅) → 𝑆 ≠ ∅) |
| 40 | 39 | neneqd 2937 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) ∧ 𝑟 = ∅) → ¬ 𝑆 = ∅) |
| 41 | 38, 40 | pm2.65da 816 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → ¬ 𝑟 = ∅) |
| 42 | 41 | neqned 2939 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → 𝑟 ≠ ∅) |
| 43 | 23, 14 | zarclsiin 33902 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑟 ≠ ∅) → ∩ 𝑙 ∈ 𝑟 (𝑉‘𝑙) = (𝑉‘((RSpan‘𝑅)‘∪ 𝑟))) |
| 44 | 2, 5, 42, 43 | syl3anc 1373 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → ∩
𝑙 ∈ 𝑟 (𝑉‘𝑙) = (𝑉‘((RSpan‘𝑅)‘∪ 𝑟))) |
| 45 | 23 | a1i 11 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
| 46 | 18 | adantl 481 |
. . . . . . 7
⊢
((((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) ∧ 𝑖 = ((RSpan‘𝑅)‘∪ 𝑟)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘∪ 𝑟) ⊆ 𝑗}) |
| 47 | 26 | rabex 5309 |
. . . . . . . 8
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘∪ 𝑟)
⊆ 𝑗} ∈
V |
| 48 | 47 | a1i 11 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘∪ 𝑟) ⊆ 𝑗} ∈ V) |
| 49 | 45, 46, 16, 48 | fvmptd 6993 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → (𝑉‘((RSpan‘𝑅)‘∪ 𝑟)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘∪ 𝑟) ⊆ 𝑗}) |
| 50 | 32, 44, 49 | 3eqtrd 2774 |
. . . . 5
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → ∩ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ((RSpan‘𝑅)‘∪ 𝑟) ⊆ 𝑗}) |
| 51 | 16, 20, 50 | rspcedvd 3603 |
. . . 4
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → ∃𝑖 ∈ (LIdeal‘𝑅)∩ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
| 52 | | intex 5314 |
. . . . . . . 8
⊢ (𝑆 ≠ ∅ ↔ ∩ 𝑆
∈ V) |
| 53 | 52 | biimpi 216 |
. . . . . . 7
⊢ (𝑆 ≠ ∅ → ∩ 𝑆
∈ V) |
| 54 | 53 | 3ad2ant3 1135 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ∧ 𝑆 ≠ ∅) → ∩ 𝑆
∈ V) |
| 55 | 23 | elrnmpt 5938 |
. . . . . 6
⊢ (∩ 𝑆
∈ V → (∩ 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)∩ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
| 56 | 54, 55 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ∧ 𝑆 ≠ ∅) → (∩ 𝑆
∈ ran 𝑉 ↔
∃𝑖 ∈
(LIdeal‘𝑅)∩ 𝑆 =
{𝑗 ∈
(PrmIdeal‘𝑅) ∣
𝑖 ⊆ 𝑗})) |
| 57 | 56 | ad5ant123 1366 |
. . . 4
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → (∩ 𝑆 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)∩ 𝑆 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
| 58 | 51, 57 | mpbird 257 |
. . 3
⊢
(((((𝑅 ∈ CRing
∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) ∧ 𝑆 = (𝑉 “ 𝑟)) → ∩ 𝑆 ∈ ran 𝑉) |
| 59 | | fvexd 6891 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (LIdeal‘𝑅) ∈ V) |
| 60 | 24 | a1i 11 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → Fun 𝑉) |
| 61 | | simplr 768 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ran 𝑉) |
| 62 | 27, 23 | fnmpti 6681 |
. . . . . . . 8
⊢ 𝑉 Fn (LIdeal‘𝑅) |
| 63 | | fnima 6668 |
. . . . . . . 8
⊢ (𝑉 Fn (LIdeal‘𝑅) → (𝑉 “ (LIdeal‘𝑅)) = ran 𝑉) |
| 64 | 62, 63 | ax-mp 5 |
. . . . . . 7
⊢ (𝑉 “ (LIdeal‘𝑅)) = ran 𝑉 |
| 65 | 61, 64 | sseqtrrdi 4000 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (𝑉 “ (LIdeal‘𝑅))) |
| 66 | | ssimaexg 6965 |
. . . . . 6
⊢
(((LIdeal‘𝑅)
∈ V ∧ Fun 𝑉 ∧
𝑆 ⊆ (𝑉 “ (LIdeal‘𝑅))) → ∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉 “ 𝑟))) |
| 67 | 59, 60, 65, 66 | syl3anc 1373 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉 “ 𝑟))) |
| 68 | | vex 3463 |
. . . . . . . . . 10
⊢ 𝑟 ∈ V |
| 69 | 68 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ∈ V) |
| 70 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ⊆ (LIdeal‘𝑅)) |
| 71 | 69, 70 | elpwd 4581 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) ∧ 𝑟 ⊆ (LIdeal‘𝑅)) → 𝑟 ∈ 𝒫 (LIdeal‘𝑅)) |
| 72 | 71 | ex 412 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (𝑟 ⊆ (LIdeal‘𝑅) → 𝑟 ∈ 𝒫 (LIdeal‘𝑅))) |
| 73 | 72 | anim1d 611 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ((𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉 “ 𝑟)) → (𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉 “ 𝑟)))) |
| 74 | 73 | eximdv 1917 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → (∃𝑟(𝑟 ⊆ (LIdeal‘𝑅) ∧ 𝑆 = (𝑉 “ 𝑟)) → ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉 “ 𝑟)))) |
| 75 | 67, 74 | mpd 15 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉 “ 𝑟))) |
| 76 | | df-rex 3061 |
. . . 4
⊢
(∃𝑟 ∈
𝒫 (LIdeal‘𝑅)𝑆 = (𝑉 “ 𝑟) ↔ ∃𝑟(𝑟 ∈ 𝒫 (LIdeal‘𝑅) ∧ 𝑆 = (𝑉 “ 𝑟))) |
| 77 | 75, 76 | sylibr 234 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∃𝑟 ∈ 𝒫
(LIdeal‘𝑅)𝑆 = (𝑉 “ 𝑟)) |
| 78 | 58, 77 | r19.29a 3148 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉) ∧ 𝑆 ≠ ∅) → ∩ 𝑆
∈ ran 𝑉) |
| 79 | 78 | 3impa 1109 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ∧ 𝑆 ≠ ∅) → ∩ 𝑆
∈ ran 𝑉) |