Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnneiima Structured version   Visualization version   GIF version

Theorem cnneiima 46210
Description: Given a continuous function, the preimage of a neighborhood is a neighborhood. To be precise, the preimage of a neighborhood of a subset 𝑇 of the codomain of a continuous function is a neighborhood of any subset of the preimage of 𝑇. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypotheses
Ref Expression
cnneiima.1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cnneiima.2 (𝜑𝑁 ∈ ((nei‘𝐾)‘𝑇))
cnneiima.3 (𝜑𝑆 ⊆ (𝐹𝑇))
Assertion
Ref Expression
cnneiima (𝜑 → (𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem cnneiima
StepHypRef Expression
1 cnneiima.3 . . . 4 (𝜑𝑆 ⊆ (𝐹𝑇))
2 cnneiima.1 . . . . . . 7 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
4 eqid 2738 . . . . . . . 8 𝐾 = 𝐾
53, 4cnf 22397 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
62, 5syl 17 . . . . . 6 (𝜑𝐹: 𝐽 𝐾)
76ffund 6604 . . . . 5 (𝜑 → Fun 𝐹)
8 cnneiima.2 . . . . . 6 (𝜑𝑁 ∈ ((nei‘𝐾)‘𝑇))
9 cntop2 22392 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
102, 9syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
114neiss2 22252 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐾)‘𝑇)) → 𝑇 𝐾)
1210, 8, 11syl2anc 584 . . . . . . 7 (𝜑𝑇 𝐾)
134neii1 22257 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐾)‘𝑇)) → 𝑁 𝐾)
1410, 8, 13syl2anc 584 . . . . . . 7 (𝜑𝑁 𝐾)
154neiint 22255 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑇 𝐾𝑁 𝐾) → (𝑁 ∈ ((nei‘𝐾)‘𝑇) ↔ 𝑇 ⊆ ((int‘𝐾)‘𝑁)))
1610, 12, 14, 15syl3anc 1370 . . . . . 6 (𝜑 → (𝑁 ∈ ((nei‘𝐾)‘𝑇) ↔ 𝑇 ⊆ ((int‘𝐾)‘𝑁)))
178, 16mpbid 231 . . . . 5 (𝜑𝑇 ⊆ ((int‘𝐾)‘𝑁))
18 sspreima 6945 . . . . 5 ((Fun 𝐹𝑇 ⊆ ((int‘𝐾)‘𝑁)) → (𝐹𝑇) ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
197, 17, 18syl2anc 584 . . . 4 (𝜑 → (𝐹𝑇) ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
201, 19sstrd 3931 . . 3 (𝜑𝑆 ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
214cnntri 22422 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑁 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑁)) ⊆ ((int‘𝐽)‘(𝐹𝑁)))
222, 14, 21syl2anc 584 . . 3 (𝜑 → (𝐹 “ ((int‘𝐾)‘𝑁)) ⊆ ((int‘𝐽)‘(𝐹𝑁)))
2320, 22sstrd 3931 . 2 (𝜑𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁)))
24 cntop1 22391 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
252, 24syl 17 . . 3 (𝜑𝐽 ∈ Top)
26 sspreima 6945 . . . . . 6 ((Fun 𝐹𝑇 𝐾) → (𝐹𝑇) ⊆ (𝐹 𝐾))
277, 12, 26syl2anc 584 . . . . 5 (𝜑 → (𝐹𝑇) ⊆ (𝐹 𝐾))
28 fimacnv 6622 . . . . . 6 (𝐹: 𝐽 𝐾 → (𝐹 𝐾) = 𝐽)
296, 28syl 17 . . . . 5 (𝜑 → (𝐹 𝐾) = 𝐽)
3027, 29sseqtrd 3961 . . . 4 (𝜑 → (𝐹𝑇) ⊆ 𝐽)
311, 30sstrd 3931 . . 3 (𝜑𝑆 𝐽)
32 sspreima 6945 . . . . 5 ((Fun 𝐹𝑁 𝐾) → (𝐹𝑁) ⊆ (𝐹 𝐾))
337, 14, 32syl2anc 584 . . . 4 (𝜑 → (𝐹𝑁) ⊆ (𝐹 𝐾))
3433, 29sseqtrd 3961 . . 3 (𝜑 → (𝐹𝑁) ⊆ 𝐽)
353neiint 22255 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽 ∧ (𝐹𝑁) ⊆ 𝐽) → ((𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁))))
3625, 31, 34, 35syl3anc 1370 . 2 (𝜑 → ((𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁))))
3723, 36mpbird 256 1 (𝜑 → (𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wss 3887   cuni 4839  ccnv 5588  cima 5592  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  Topctop 22042  intcnt 22168  neicnei 22248   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-top 22043  df-topon 22060  df-ntr 22171  df-nei 22249  df-cn 22378
This theorem is referenced by:  sepfsepc  46221
  Copyright terms: Public domain W3C validator