Proof of Theorem cnneiima
Step | Hyp | Ref
| Expression |
1 | | cnneiima.3 |
. . . 4
⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝑇)) |
2 | | cnneiima.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
3 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
4 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐾 =
∪ 𝐾 |
5 | 3, 4 | cnf 22397 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
6 | 2, 5 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:∪ 𝐽⟶∪ 𝐾) |
7 | 6 | ffund 6604 |
. . . . 5
⊢ (𝜑 → Fun 𝐹) |
8 | | cnneiima.2 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ((nei‘𝐾)‘𝑇)) |
9 | | cntop2 22392 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
10 | 2, 9 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Top) |
11 | 4 | neiss2 22252 |
. . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐾)‘𝑇)) → 𝑇 ⊆ ∪ 𝐾) |
12 | 10, 8, 11 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐾) |
13 | 4 | neii1 22257 |
. . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐾)‘𝑇)) → 𝑁 ⊆ ∪ 𝐾) |
14 | 10, 8, 13 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ⊆ ∪ 𝐾) |
15 | 4 | neiint 22255 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝑇 ⊆ ∪ 𝐾
∧ 𝑁 ⊆ ∪ 𝐾)
→ (𝑁 ∈
((nei‘𝐾)‘𝑇) ↔ 𝑇 ⊆ ((int‘𝐾)‘𝑁))) |
16 | 10, 12, 14, 15 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝑁 ∈ ((nei‘𝐾)‘𝑇) ↔ 𝑇 ⊆ ((int‘𝐾)‘𝑁))) |
17 | 8, 16 | mpbid 231 |
. . . . 5
⊢ (𝜑 → 𝑇 ⊆ ((int‘𝐾)‘𝑁)) |
18 | | sspreima 6945 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝑇 ⊆ ((int‘𝐾)‘𝑁)) → (◡𝐹 “ 𝑇) ⊆ (◡𝐹 “ ((int‘𝐾)‘𝑁))) |
19 | 7, 17, 18 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ 𝑇) ⊆ (◡𝐹 “ ((int‘𝐾)‘𝑁))) |
20 | 1, 19 | sstrd 3931 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ ((int‘𝐾)‘𝑁))) |
21 | 4 | cnntri 22422 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑁 ⊆ ∪ 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑁)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑁))) |
22 | 2, 14, 21 | syl2anc 584 |
. . 3
⊢ (𝜑 → (◡𝐹 “ ((int‘𝐾)‘𝑁)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑁))) |
23 | 20, 22 | sstrd 3931 |
. 2
⊢ (𝜑 → 𝑆 ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑁))) |
24 | | cntop1 22391 |
. . . 4
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
25 | 2, 24 | syl 17 |
. . 3
⊢ (𝜑 → 𝐽 ∈ Top) |
26 | | sspreima 6945 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝑇 ⊆ ∪ 𝐾) → (◡𝐹 “ 𝑇) ⊆ (◡𝐹 “ ∪ 𝐾)) |
27 | 7, 12, 26 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ 𝑇) ⊆ (◡𝐹 “ ∪ 𝐾)) |
28 | | fimacnv 6622 |
. . . . . 6
⊢ (𝐹:∪
𝐽⟶∪ 𝐾
→ (◡𝐹 “ ∪ 𝐾) = ∪
𝐽) |
29 | 6, 28 | syl 17 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ ∪ 𝐾) = ∪
𝐽) |
30 | 27, 29 | sseqtrd 3961 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ 𝑇) ⊆ ∪ 𝐽) |
31 | 1, 30 | sstrd 3931 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
32 | | sspreima 6945 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝑁 ⊆ ∪ 𝐾) → (◡𝐹 “ 𝑁) ⊆ (◡𝐹 “ ∪ 𝐾)) |
33 | 7, 14, 32 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ 𝑁) ⊆ (◡𝐹 “ ∪ 𝐾)) |
34 | 33, 29 | sseqtrd 3961 |
. . 3
⊢ (𝜑 → (◡𝐹 “ 𝑁) ⊆ ∪ 𝐽) |
35 | 3 | neiint 22255 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽
∧ (◡𝐹 “ 𝑁) ⊆ ∪ 𝐽) → ((◡𝐹 “ 𝑁) ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑁)))) |
36 | 25, 31, 34, 35 | syl3anc 1370 |
. 2
⊢ (𝜑 → ((◡𝐹 “ 𝑁) ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑁)))) |
37 | 23, 36 | mpbird 256 |
1
⊢ (𝜑 → (◡𝐹 “ 𝑁) ∈ ((nei‘𝐽)‘𝑆)) |