Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnneiima Structured version   Visualization version   GIF version

Theorem cnneiima 48596
Description: Given a continuous function, the preimage of a neighborhood is a neighborhood. To be precise, the preimage of a neighborhood of a subset 𝑇 of the codomain of a continuous function is a neighborhood of any subset of the preimage of 𝑇. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypotheses
Ref Expression
cnneiima.1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cnneiima.2 (𝜑𝑁 ∈ ((nei‘𝐾)‘𝑇))
cnneiima.3 (𝜑𝑆 ⊆ (𝐹𝑇))
Assertion
Ref Expression
cnneiima (𝜑 → (𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem cnneiima
StepHypRef Expression
1 cnneiima.3 . . . 4 (𝜑𝑆 ⊆ (𝐹𝑇))
2 cnneiima.1 . . . . . . 7 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 eqid 2740 . . . . . . . 8 𝐽 = 𝐽
4 eqid 2740 . . . . . . . 8 𝐾 = 𝐾
53, 4cnf 23275 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
62, 5syl 17 . . . . . 6 (𝜑𝐹: 𝐽 𝐾)
76ffund 6751 . . . . 5 (𝜑 → Fun 𝐹)
8 cnneiima.2 . . . . . 6 (𝜑𝑁 ∈ ((nei‘𝐾)‘𝑇))
9 cntop2 23270 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
102, 9syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
114neiss2 23130 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐾)‘𝑇)) → 𝑇 𝐾)
1210, 8, 11syl2anc 583 . . . . . . 7 (𝜑𝑇 𝐾)
134neii1 23135 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐾)‘𝑇)) → 𝑁 𝐾)
1410, 8, 13syl2anc 583 . . . . . . 7 (𝜑𝑁 𝐾)
154neiint 23133 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑇 𝐾𝑁 𝐾) → (𝑁 ∈ ((nei‘𝐾)‘𝑇) ↔ 𝑇 ⊆ ((int‘𝐾)‘𝑁)))
1610, 12, 14, 15syl3anc 1371 . . . . . 6 (𝜑 → (𝑁 ∈ ((nei‘𝐾)‘𝑇) ↔ 𝑇 ⊆ ((int‘𝐾)‘𝑁)))
178, 16mpbid 232 . . . . 5 (𝜑𝑇 ⊆ ((int‘𝐾)‘𝑁))
18 sspreima 7101 . . . . 5 ((Fun 𝐹𝑇 ⊆ ((int‘𝐾)‘𝑁)) → (𝐹𝑇) ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
197, 17, 18syl2anc 583 . . . 4 (𝜑 → (𝐹𝑇) ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
201, 19sstrd 4019 . . 3 (𝜑𝑆 ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
214cnntri 23300 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑁 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑁)) ⊆ ((int‘𝐽)‘(𝐹𝑁)))
222, 14, 21syl2anc 583 . . 3 (𝜑 → (𝐹 “ ((int‘𝐾)‘𝑁)) ⊆ ((int‘𝐽)‘(𝐹𝑁)))
2320, 22sstrd 4019 . 2 (𝜑𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁)))
24 cntop1 23269 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
252, 24syl 17 . . 3 (𝜑𝐽 ∈ Top)
26 sspreima 7101 . . . . . 6 ((Fun 𝐹𝑇 𝐾) → (𝐹𝑇) ⊆ (𝐹 𝐾))
277, 12, 26syl2anc 583 . . . . 5 (𝜑 → (𝐹𝑇) ⊆ (𝐹 𝐾))
28 fimacnv 6769 . . . . . 6 (𝐹: 𝐽 𝐾 → (𝐹 𝐾) = 𝐽)
296, 28syl 17 . . . . 5 (𝜑 → (𝐹 𝐾) = 𝐽)
3027, 29sseqtrd 4049 . . . 4 (𝜑 → (𝐹𝑇) ⊆ 𝐽)
311, 30sstrd 4019 . . 3 (𝜑𝑆 𝐽)
32 sspreima 7101 . . . . 5 ((Fun 𝐹𝑁 𝐾) → (𝐹𝑁) ⊆ (𝐹 𝐾))
337, 14, 32syl2anc 583 . . . 4 (𝜑 → (𝐹𝑁) ⊆ (𝐹 𝐾))
3433, 29sseqtrd 4049 . . 3 (𝜑 → (𝐹𝑁) ⊆ 𝐽)
353neiint 23133 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽 ∧ (𝐹𝑁) ⊆ 𝐽) → ((𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁))))
3625, 31, 34, 35syl3anc 1371 . 2 (𝜑 → ((𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁))))
3723, 36mpbird 257 1 (𝜑 → (𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wss 3976   cuni 4931  ccnv 5699  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  Topctop 22920  intcnt 23046  neicnei 23126   Cn ccn 23253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-top 22921  df-topon 22938  df-ntr 23049  df-nei 23127  df-cn 23256
This theorem is referenced by:  sepfsepc  48607
  Copyright terms: Public domain W3C validator