Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnneiima Structured version   Visualization version   GIF version

Theorem cnneiima 46098
Description: Given a continuous function, the preimage of a neighborhood is a neighborhood. To be precise, the preimage of a neighborhood of a subset 𝑇 of the codomain of a continuous function is a neighborhood of any subset of the preimage of 𝑇. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypotheses
Ref Expression
cnneiima.1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cnneiima.2 (𝜑𝑁 ∈ ((nei‘𝐾)‘𝑇))
cnneiima.3 (𝜑𝑆 ⊆ (𝐹𝑇))
Assertion
Ref Expression
cnneiima (𝜑 → (𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem cnneiima
StepHypRef Expression
1 cnneiima.3 . . . 4 (𝜑𝑆 ⊆ (𝐹𝑇))
2 cnneiima.1 . . . . . . 7 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
4 eqid 2738 . . . . . . . 8 𝐾 = 𝐾
53, 4cnf 22305 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
62, 5syl 17 . . . . . 6 (𝜑𝐹: 𝐽 𝐾)
76ffund 6588 . . . . 5 (𝜑 → Fun 𝐹)
8 cnneiima.2 . . . . . 6 (𝜑𝑁 ∈ ((nei‘𝐾)‘𝑇))
9 cntop2 22300 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
102, 9syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
114neiss2 22160 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐾)‘𝑇)) → 𝑇 𝐾)
1210, 8, 11syl2anc 583 . . . . . . 7 (𝜑𝑇 𝐾)
134neii1 22165 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐾)‘𝑇)) → 𝑁 𝐾)
1410, 8, 13syl2anc 583 . . . . . . 7 (𝜑𝑁 𝐾)
154neiint 22163 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑇 𝐾𝑁 𝐾) → (𝑁 ∈ ((nei‘𝐾)‘𝑇) ↔ 𝑇 ⊆ ((int‘𝐾)‘𝑁)))
1610, 12, 14, 15syl3anc 1369 . . . . . 6 (𝜑 → (𝑁 ∈ ((nei‘𝐾)‘𝑇) ↔ 𝑇 ⊆ ((int‘𝐾)‘𝑁)))
178, 16mpbid 231 . . . . 5 (𝜑𝑇 ⊆ ((int‘𝐾)‘𝑁))
18 sspreima 6927 . . . . 5 ((Fun 𝐹𝑇 ⊆ ((int‘𝐾)‘𝑁)) → (𝐹𝑇) ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
197, 17, 18syl2anc 583 . . . 4 (𝜑 → (𝐹𝑇) ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
201, 19sstrd 3927 . . 3 (𝜑𝑆 ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
214cnntri 22330 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑁 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑁)) ⊆ ((int‘𝐽)‘(𝐹𝑁)))
222, 14, 21syl2anc 583 . . 3 (𝜑 → (𝐹 “ ((int‘𝐾)‘𝑁)) ⊆ ((int‘𝐽)‘(𝐹𝑁)))
2320, 22sstrd 3927 . 2 (𝜑𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁)))
24 cntop1 22299 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
252, 24syl 17 . . 3 (𝜑𝐽 ∈ Top)
26 sspreima 6927 . . . . . 6 ((Fun 𝐹𝑇 𝐾) → (𝐹𝑇) ⊆ (𝐹 𝐾))
277, 12, 26syl2anc 583 . . . . 5 (𝜑 → (𝐹𝑇) ⊆ (𝐹 𝐾))
28 fimacnv 6606 . . . . . 6 (𝐹: 𝐽 𝐾 → (𝐹 𝐾) = 𝐽)
296, 28syl 17 . . . . 5 (𝜑 → (𝐹 𝐾) = 𝐽)
3027, 29sseqtrd 3957 . . . 4 (𝜑 → (𝐹𝑇) ⊆ 𝐽)
311, 30sstrd 3927 . . 3 (𝜑𝑆 𝐽)
32 sspreima 6927 . . . . 5 ((Fun 𝐹𝑁 𝐾) → (𝐹𝑁) ⊆ (𝐹 𝐾))
337, 14, 32syl2anc 583 . . . 4 (𝜑 → (𝐹𝑁) ⊆ (𝐹 𝐾))
3433, 29sseqtrd 3957 . . 3 (𝜑 → (𝐹𝑁) ⊆ 𝐽)
353neiint 22163 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽 ∧ (𝐹𝑁) ⊆ 𝐽) → ((𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁))))
3625, 31, 34, 35syl3anc 1369 . 2 (𝜑 → ((𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁))))
3723, 36mpbird 256 1 (𝜑 → (𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wss 3883   cuni 4836  ccnv 5579  cima 5583  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  Topctop 21950  intcnt 22076  neicnei 22156   Cn ccn 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-top 21951  df-topon 21968  df-ntr 22079  df-nei 22157  df-cn 22286
This theorem is referenced by:  sepfsepc  46109
  Copyright terms: Public domain W3C validator