Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnneiima Structured version   Visualization version   GIF version

Theorem cnneiima 45649
Description: Given a continuous function, the preimage of a neighborhood is a neighborhood. To be precise, the preimage of a neighborhood of a subset 𝑇 of the codomain of a continuous function is a neighborhood of any subset of the preimage of 𝑇. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypotheses
Ref Expression
cnneiima.1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cnneiima.2 (𝜑𝑁 ∈ ((nei‘𝐾)‘𝑇))
cnneiima.3 (𝜑𝑆 ⊆ (𝐹𝑇))
Assertion
Ref Expression
cnneiima (𝜑 → (𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem cnneiima
StepHypRef Expression
1 cnneiima.3 . . . 4 (𝜑𝑆 ⊆ (𝐹𝑇))
2 cnneiima.1 . . . . . . 7 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 eqid 2758 . . . . . . . 8 𝐽 = 𝐽
4 eqid 2758 . . . . . . . 8 𝐾 = 𝐾
53, 4cnf 21959 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
62, 5syl 17 . . . . . 6 (𝜑𝐹: 𝐽 𝐾)
76ffund 6507 . . . . 5 (𝜑 → Fun 𝐹)
8 cnneiima.2 . . . . . 6 (𝜑𝑁 ∈ ((nei‘𝐾)‘𝑇))
9 cntop2 21954 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
102, 9syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
114neiss2 21814 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐾)‘𝑇)) → 𝑇 𝐾)
1210, 8, 11syl2anc 587 . . . . . . 7 (𝜑𝑇 𝐾)
134neii1 21819 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐾)‘𝑇)) → 𝑁 𝐾)
1410, 8, 13syl2anc 587 . . . . . . 7 (𝜑𝑁 𝐾)
154neiint 21817 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑇 𝐾𝑁 𝐾) → (𝑁 ∈ ((nei‘𝐾)‘𝑇) ↔ 𝑇 ⊆ ((int‘𝐾)‘𝑁)))
1610, 12, 14, 15syl3anc 1368 . . . . . 6 (𝜑 → (𝑁 ∈ ((nei‘𝐾)‘𝑇) ↔ 𝑇 ⊆ ((int‘𝐾)‘𝑁)))
178, 16mpbid 235 . . . . 5 (𝜑𝑇 ⊆ ((int‘𝐾)‘𝑁))
18 sspreima 6833 . . . . 5 ((Fun 𝐹𝑇 ⊆ ((int‘𝐾)‘𝑁)) → (𝐹𝑇) ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
197, 17, 18syl2anc 587 . . . 4 (𝜑 → (𝐹𝑇) ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
201, 19sstrd 3904 . . 3 (𝜑𝑆 ⊆ (𝐹 “ ((int‘𝐾)‘𝑁)))
214cnntri 21984 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑁 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑁)) ⊆ ((int‘𝐽)‘(𝐹𝑁)))
222, 14, 21syl2anc 587 . . 3 (𝜑 → (𝐹 “ ((int‘𝐾)‘𝑁)) ⊆ ((int‘𝐽)‘(𝐹𝑁)))
2320, 22sstrd 3904 . 2 (𝜑𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁)))
24 cntop1 21953 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
252, 24syl 17 . . 3 (𝜑𝐽 ∈ Top)
26 sspreima 6833 . . . . . 6 ((Fun 𝐹𝑇 𝐾) → (𝐹𝑇) ⊆ (𝐹 𝐾))
277, 12, 26syl2anc 587 . . . . 5 (𝜑 → (𝐹𝑇) ⊆ (𝐹 𝐾))
28 fimacnv 6836 . . . . . 6 (𝐹: 𝐽 𝐾 → (𝐹 𝐾) = 𝐽)
296, 28syl 17 . . . . 5 (𝜑 → (𝐹 𝐾) = 𝐽)
3027, 29sseqtrd 3934 . . . 4 (𝜑 → (𝐹𝑇) ⊆ 𝐽)
311, 30sstrd 3904 . . 3 (𝜑𝑆 𝐽)
32 sspreima 6833 . . . . 5 ((Fun 𝐹𝑁 𝐾) → (𝐹𝑁) ⊆ (𝐹 𝐾))
337, 14, 32syl2anc 587 . . . 4 (𝜑 → (𝐹𝑁) ⊆ (𝐹 𝐾))
3433, 29sseqtrd 3934 . . 3 (𝜑 → (𝐹𝑁) ⊆ 𝐽)
353neiint 21817 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽 ∧ (𝐹𝑁) ⊆ 𝐽) → ((𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁))))
3625, 31, 34, 35syl3anc 1368 . 2 (𝜑 → ((𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘(𝐹𝑁))))
3723, 36mpbird 260 1 (𝜑 → (𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wss 3860   cuni 4801  ccnv 5527  cima 5531  Fun wfun 6334  wf 6336  cfv 6340  (class class class)co 7156  Topctop 21606  intcnt 21730  neicnei 21810   Cn ccn 21937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8424  df-top 21607  df-topon 21624  df-ntr 21733  df-nei 21811  df-cn 21940
This theorem is referenced by:  sepfsepc  45660
  Copyright terms: Public domain W3C validator