Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvclteinc Structured version   Visualization version   GIF version

Theorem orvclteinc 34510
Description: Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvclteinc.1 (𝜑𝐴 ∈ ℝ)
orvclteinc.2 (𝜑𝐵 ∈ ℝ)
orvclteinc.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
orvclteinc (𝜑 → (𝑋RV/𝑐𝐴) ⊆ (𝑋RV/𝑐𝐵))

Proof of Theorem orvclteinc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstfrv.1 . . . . 5 (𝜑𝑃 ∈ Prob)
2 dstfrv.2 . . . . 5 (𝜑𝑋 ∈ (rRndVar‘𝑃))
31, 2rrvf2 34482 . . . 4 (𝜑𝑋:dom 𝑋⟶ℝ)
43ffund 6660 . . 3 (𝜑 → Fun 𝑋)
5 simp2 1137 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
6 orvclteinc.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
763ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝐴 ∈ ℝ)
8 orvclteinc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
983ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
10 simp3 1138 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝑥𝐴)
11 orvclteinc.3 . . . . . . 7 (𝜑𝐴𝐵)
12113ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝐴𝐵)
135, 7, 9, 10, 12letrd 11277 . . . . 5 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝑥𝐵)
14133expia 1121 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥𝐴𝑥𝐵))
1514ss2rabdv 4024 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} ⊆ {𝑥 ∈ ℝ ∣ 𝑥𝐵})
16 sspreima 7007 . . 3 ((Fun 𝑋 ∧ {𝑥 ∈ ℝ ∣ 𝑥𝐴} ⊆ {𝑥 ∈ ℝ ∣ 𝑥𝐵}) → (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}) ⊆ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐵}))
174, 15, 16syl2anc 584 . 2 (𝜑 → (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}) ⊆ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐵}))
181, 2, 6orrvcval4 34499 . 2 (𝜑 → (𝑋RV/𝑐𝐴) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}))
191, 2, 8orrvcval4 34499 . 2 (𝜑 → (𝑋RV/𝑐𝐵) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐵}))
2017, 18, 193sstr4d 3986 1 (𝜑 → (𝑋RV/𝑐𝐴) ⊆ (𝑋RV/𝑐𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2113  {crab 3396  wss 3898   class class class wbr 5093  ccnv 5618  dom cdm 5619  cima 5622  Fun wfun 6480  cfv 6486  (class class class)co 7352  cr 11012  cle 11154  Probcprb 34441  rRndVarcrrv 34474  RV/𝑐corvc 34490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-ioo 13251  df-topgen 17349  df-top 22810  df-bases 22862  df-esum 34062  df-siga 34143  df-sigagen 34173  df-brsiga 34216  df-meas 34230  df-mbfm 34284  df-prob 34442  df-rrv 34475  df-orvc 34491
This theorem is referenced by:  dstfrvinc  34511  dstfrvclim1  34512
  Copyright terms: Public domain W3C validator