![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvclteinc | Structured version Visualization version GIF version |
Description: Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017.) |
Ref | Expression |
---|---|
dstfrv.1 | β’ (π β π β Prob) |
dstfrv.2 | β’ (π β π β (rRndVarβπ)) |
orvclteinc.1 | β’ (π β π΄ β β) |
orvclteinc.2 | β’ (π β π΅ β β) |
orvclteinc.3 | β’ (π β π΄ β€ π΅) |
Ref | Expression |
---|---|
orvclteinc | β’ (π β (πβRV/π β€ π΄) β (πβRV/π β€ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstfrv.1 | . . . . 5 β’ (π β π β Prob) | |
2 | dstfrv.2 | . . . . 5 β’ (π β π β (rRndVarβπ)) | |
3 | 1, 2 | rrvf2 34125 | . . . 4 β’ (π β π:dom πβΆβ) |
4 | 3 | ffund 6721 | . . 3 β’ (π β Fun π) |
5 | simp2 1134 | . . . . . 6 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π₯ β β) | |
6 | orvclteinc.1 | . . . . . . 7 β’ (π β π΄ β β) | |
7 | 6 | 3ad2ant1 1130 | . . . . . 6 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π΄ β β) |
8 | orvclteinc.2 | . . . . . . 7 β’ (π β π΅ β β) | |
9 | 8 | 3ad2ant1 1130 | . . . . . 6 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π΅ β β) |
10 | simp3 1135 | . . . . . 6 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π₯ β€ π΄) | |
11 | orvclteinc.3 | . . . . . . 7 β’ (π β π΄ β€ π΅) | |
12 | 11 | 3ad2ant1 1130 | . . . . . 6 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π΄ β€ π΅) |
13 | 5, 7, 9, 10, 12 | letrd 11401 | . . . . 5 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π₯ β€ π΅) |
14 | 13 | 3expia 1118 | . . . 4 β’ ((π β§ π₯ β β) β (π₯ β€ π΄ β π₯ β€ π΅)) |
15 | 14 | ss2rabdv 4065 | . . 3 β’ (π β {π₯ β β β£ π₯ β€ π΄} β {π₯ β β β£ π₯ β€ π΅}) |
16 | sspreima 7072 | . . 3 β’ ((Fun π β§ {π₯ β β β£ π₯ β€ π΄} β {π₯ β β β£ π₯ β€ π΅}) β (β‘π β {π₯ β β β£ π₯ β€ π΄}) β (β‘π β {π₯ β β β£ π₯ β€ π΅})) | |
17 | 4, 15, 16 | syl2anc 582 | . 2 β’ (π β (β‘π β {π₯ β β β£ π₯ β€ π΄}) β (β‘π β {π₯ β β β£ π₯ β€ π΅})) |
18 | 1, 2, 6 | orrvcval4 34141 | . 2 β’ (π β (πβRV/π β€ π΄) = (β‘π β {π₯ β β β£ π₯ β€ π΄})) |
19 | 1, 2, 8 | orrvcval4 34141 | . 2 β’ (π β (πβRV/π β€ π΅) = (β‘π β {π₯ β β β£ π₯ β€ π΅})) |
20 | 17, 18, 19 | 3sstr4d 4020 | 1 β’ (π β (πβRV/π β€ π΄) β (πβRV/π β€ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 β wcel 2098 {crab 3419 β wss 3939 class class class wbr 5143 β‘ccnv 5671 dom cdm 5672 β cima 5675 Fun wfun 6537 βcfv 6543 (class class class)co 7416 βcr 11137 β€ cle 11279 Probcprb 34084 rRndVarcrrv 34117 βRV/πcorvc 34132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7991 df-2nd 7992 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-ioo 13360 df-topgen 17424 df-top 22814 df-bases 22867 df-esum 33704 df-siga 33785 df-sigagen 33815 df-brsiga 33858 df-meas 33872 df-mbfm 33926 df-prob 34085 df-rrv 34118 df-orvc 34133 |
This theorem is referenced by: dstfrvinc 34153 dstfrvclim1 34154 |
Copyright terms: Public domain | W3C validator |