| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvclteinc | Structured version Visualization version GIF version | ||
| Description: Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017.) |
| Ref | Expression |
|---|---|
| dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orvclteinc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| orvclteinc.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| orvclteinc.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| orvclteinc | ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ⊆ (𝑋∘RV/𝑐 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dstfrv.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | dstfrv.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 3 | 1, 2 | rrvf2 34482 | . . . 4 ⊢ (𝜑 → 𝑋:dom 𝑋⟶ℝ) |
| 4 | 3 | ffund 6660 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
| 5 | simp2 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝑥 ∈ ℝ) | |
| 6 | orvclteinc.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | 6 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 8 | orvclteinc.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | 8 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝐵 ∈ ℝ) |
| 10 | simp3 1138 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝑥 ≤ 𝐴) | |
| 11 | orvclteinc.3 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 12 | 11 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝐴 ≤ 𝐵) |
| 13 | 5, 7, 9, 10, 12 | letrd 11277 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝑥 ≤ 𝐵) |
| 14 | 13 | 3expia 1121 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ 𝐴 → 𝑥 ≤ 𝐵)) |
| 15 | 14 | ss2rabdv 4024 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ⊆ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵}) |
| 16 | sspreima 7007 | . . 3 ⊢ ((Fun 𝑋 ∧ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ⊆ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵}) → (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}) ⊆ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵})) | |
| 17 | 4, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}) ⊆ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵})) |
| 18 | 1, 2, 6 | orrvcval4 34499 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
| 19 | 1, 2, 8 | orrvcval4 34499 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐵) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵})) |
| 20 | 17, 18, 19 | 3sstr4d 3986 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ⊆ (𝑋∘RV/𝑐 ≤ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 class class class wbr 5093 ◡ccnv 5618 dom cdm 5619 “ cima 5622 Fun wfun 6480 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 ≤ cle 11154 Probcprb 34441 rRndVarcrrv 34474 ∘RV/𝑐corvc 34490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-ioo 13251 df-topgen 17349 df-top 22810 df-bases 22862 df-esum 34062 df-siga 34143 df-sigagen 34173 df-brsiga 34216 df-meas 34230 df-mbfm 34284 df-prob 34442 df-rrv 34475 df-orvc 34491 |
| This theorem is referenced by: dstfrvinc 34511 dstfrvclim1 34512 |
| Copyright terms: Public domain | W3C validator |