Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvclteinc Structured version   Visualization version   GIF version

Theorem orvclteinc 34474
Description: Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvclteinc.1 (𝜑𝐴 ∈ ℝ)
orvclteinc.2 (𝜑𝐵 ∈ ℝ)
orvclteinc.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
orvclteinc (𝜑 → (𝑋RV/𝑐𝐴) ⊆ (𝑋RV/𝑐𝐵))

Proof of Theorem orvclteinc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstfrv.1 . . . . 5 (𝜑𝑃 ∈ Prob)
2 dstfrv.2 . . . . 5 (𝜑𝑋 ∈ (rRndVar‘𝑃))
31, 2rrvf2 34446 . . . 4 (𝜑𝑋:dom 𝑋⟶ℝ)
43ffund 6695 . . 3 (𝜑 → Fun 𝑋)
5 simp2 1137 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
6 orvclteinc.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
763ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝐴 ∈ ℝ)
8 orvclteinc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
983ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
10 simp3 1138 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝑥𝐴)
11 orvclteinc.3 . . . . . . 7 (𝜑𝐴𝐵)
12113ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝐴𝐵)
135, 7, 9, 10, 12letrd 11338 . . . . 5 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝑥𝐵)
14133expia 1121 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥𝐴𝑥𝐵))
1514ss2rabdv 4042 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} ⊆ {𝑥 ∈ ℝ ∣ 𝑥𝐵})
16 sspreima 7043 . . 3 ((Fun 𝑋 ∧ {𝑥 ∈ ℝ ∣ 𝑥𝐴} ⊆ {𝑥 ∈ ℝ ∣ 𝑥𝐵}) → (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}) ⊆ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐵}))
174, 15, 16syl2anc 584 . 2 (𝜑 → (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}) ⊆ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐵}))
181, 2, 6orrvcval4 34463 . 2 (𝜑 → (𝑋RV/𝑐𝐴) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}))
191, 2, 8orrvcval4 34463 . 2 (𝜑 → (𝑋RV/𝑐𝐵) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐵}))
2017, 18, 193sstr4d 4005 1 (𝜑 → (𝑋RV/𝑐𝐴) ⊆ (𝑋RV/𝑐𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  {crab 3408  wss 3917   class class class wbr 5110  ccnv 5640  dom cdm 5641  cima 5644  Fun wfun 6508  cfv 6514  (class class class)co 7390  cr 11074  cle 11216  Probcprb 34405  rRndVarcrrv 34438  RV/𝑐corvc 34454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ioo 13317  df-topgen 17413  df-top 22788  df-bases 22840  df-esum 34025  df-siga 34106  df-sigagen 34136  df-brsiga 34179  df-meas 34193  df-mbfm 34247  df-prob 34406  df-rrv 34439  df-orvc 34455
This theorem is referenced by:  dstfrvinc  34475  dstfrvclim1  34476
  Copyright terms: Public domain W3C validator