![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvclteinc | Structured version Visualization version GIF version |
Description: Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017.) |
Ref | Expression |
---|---|
dstfrv.1 | β’ (π β π β Prob) |
dstfrv.2 | β’ (π β π β (rRndVarβπ)) |
orvclteinc.1 | β’ (π β π΄ β β) |
orvclteinc.2 | β’ (π β π΅ β β) |
orvclteinc.3 | β’ (π β π΄ β€ π΅) |
Ref | Expression |
---|---|
orvclteinc | β’ (π β (πβRV/π β€ π΄) β (πβRV/π β€ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstfrv.1 | . . . . 5 β’ (π β π β Prob) | |
2 | dstfrv.2 | . . . . 5 β’ (π β π β (rRndVarβπ)) | |
3 | 1, 2 | rrvf2 33442 | . . . 4 β’ (π β π:dom πβΆβ) |
4 | 3 | ffund 6721 | . . 3 β’ (π β Fun π) |
5 | simp2 1137 | . . . . . 6 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π₯ β β) | |
6 | orvclteinc.1 | . . . . . . 7 β’ (π β π΄ β β) | |
7 | 6 | 3ad2ant1 1133 | . . . . . 6 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π΄ β β) |
8 | orvclteinc.2 | . . . . . . 7 β’ (π β π΅ β β) | |
9 | 8 | 3ad2ant1 1133 | . . . . . 6 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π΅ β β) |
10 | simp3 1138 | . . . . . 6 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π₯ β€ π΄) | |
11 | orvclteinc.3 | . . . . . . 7 β’ (π β π΄ β€ π΅) | |
12 | 11 | 3ad2ant1 1133 | . . . . . 6 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π΄ β€ π΅) |
13 | 5, 7, 9, 10, 12 | letrd 11370 | . . . . 5 β’ ((π β§ π₯ β β β§ π₯ β€ π΄) β π₯ β€ π΅) |
14 | 13 | 3expia 1121 | . . . 4 β’ ((π β§ π₯ β β) β (π₯ β€ π΄ β π₯ β€ π΅)) |
15 | 14 | ss2rabdv 4073 | . . 3 β’ (π β {π₯ β β β£ π₯ β€ π΄} β {π₯ β β β£ π₯ β€ π΅}) |
16 | sspreima 7069 | . . 3 β’ ((Fun π β§ {π₯ β β β£ π₯ β€ π΄} β {π₯ β β β£ π₯ β€ π΅}) β (β‘π β {π₯ β β β£ π₯ β€ π΄}) β (β‘π β {π₯ β β β£ π₯ β€ π΅})) | |
17 | 4, 15, 16 | syl2anc 584 | . 2 β’ (π β (β‘π β {π₯ β β β£ π₯ β€ π΄}) β (β‘π β {π₯ β β β£ π₯ β€ π΅})) |
18 | 1, 2, 6 | orrvcval4 33458 | . 2 β’ (π β (πβRV/π β€ π΄) = (β‘π β {π₯ β β β£ π₯ β€ π΄})) |
19 | 1, 2, 8 | orrvcval4 33458 | . 2 β’ (π β (πβRV/π β€ π΅) = (β‘π β {π₯ β β β£ π₯ β€ π΅})) |
20 | 17, 18, 19 | 3sstr4d 4029 | 1 β’ (π β (πβRV/π β€ π΄) β (πβRV/π β€ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 β wcel 2106 {crab 3432 β wss 3948 class class class wbr 5148 β‘ccnv 5675 dom cdm 5676 β cima 5679 Fun wfun 6537 βcfv 6543 (class class class)co 7408 βcr 11108 β€ cle 11248 Probcprb 33401 rRndVarcrrv 33434 βRV/πcorvc 33449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-ioo 13327 df-topgen 17388 df-top 22395 df-bases 22448 df-esum 33021 df-siga 33102 df-sigagen 33132 df-brsiga 33175 df-meas 33189 df-mbfm 33243 df-prob 33402 df-rrv 33435 df-orvc 33450 |
This theorem is referenced by: dstfrvinc 33470 dstfrvclim1 33471 |
Copyright terms: Public domain | W3C validator |