| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvclteinc | Structured version Visualization version GIF version | ||
| Description: Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017.) |
| Ref | Expression |
|---|---|
| dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orvclteinc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| orvclteinc.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| orvclteinc.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| orvclteinc | ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ⊆ (𝑋∘RV/𝑐 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dstfrv.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | dstfrv.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 3 | 1, 2 | rrvf2 34439 | . . . 4 ⊢ (𝜑 → 𝑋:dom 𝑋⟶ℝ) |
| 4 | 3 | ffund 6692 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
| 5 | simp2 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝑥 ∈ ℝ) | |
| 6 | orvclteinc.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | 6 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 8 | orvclteinc.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | 8 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝐵 ∈ ℝ) |
| 10 | simp3 1138 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝑥 ≤ 𝐴) | |
| 11 | orvclteinc.3 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 12 | 11 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝐴 ≤ 𝐵) |
| 13 | 5, 7, 9, 10, 12 | letrd 11331 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) → 𝑥 ≤ 𝐵) |
| 14 | 13 | 3expia 1121 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ 𝐴 → 𝑥 ≤ 𝐵)) |
| 15 | 14 | ss2rabdv 4039 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ⊆ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵}) |
| 16 | sspreima 7040 | . . 3 ⊢ ((Fun 𝑋 ∧ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ⊆ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵}) → (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}) ⊆ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵})) | |
| 17 | 4, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}) ⊆ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵})) |
| 18 | 1, 2, 6 | orrvcval4 34456 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
| 19 | 1, 2, 8 | orrvcval4 34456 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐵) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵})) |
| 20 | 17, 18, 19 | 3sstr4d 4002 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ⊆ (𝑋∘RV/𝑐 ≤ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 class class class wbr 5107 ◡ccnv 5637 dom cdm 5638 “ cima 5641 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 ≤ cle 11209 Probcprb 34398 rRndVarcrrv 34431 ∘RV/𝑐corvc 34447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 df-topgen 17406 df-top 22781 df-bases 22833 df-esum 34018 df-siga 34099 df-sigagen 34129 df-brsiga 34172 df-meas 34186 df-mbfm 34240 df-prob 34399 df-rrv 34432 df-orvc 34448 |
| This theorem is referenced by: dstfrvinc 34468 dstfrvclim1 34469 |
| Copyright terms: Public domain | W3C validator |