Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssigagen2 Structured version   Visualization version   GIF version

Theorem sssigagen2 34113
Description: A subset of the generating set is also a subset of the generated sigma-algebra. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
sssigagen2 ((𝐴𝑉𝐵𝐴) → 𝐵 ⊆ (sigaGen‘𝐴))

Proof of Theorem sssigagen2
StepHypRef Expression
1 simpr 484 . 2 ((𝐴𝑉𝐵𝐴) → 𝐵𝐴)
2 sssigagen 34112 . . 3 (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))
32adantr 480 . 2 ((𝐴𝑉𝐵𝐴) → 𝐴 ⊆ (sigaGen‘𝐴))
41, 3sstrd 3946 1 ((𝐴𝑉𝐵𝐴) → 𝐵 ⊆ (sigaGen‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3903  cfv 6482  sigaGencsigagen 34105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-siga 34076  df-sigagen 34106
This theorem is referenced by:  sxbrsigalem5  34256
  Copyright terms: Public domain W3C validator