Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssigagen2 Structured version   Visualization version   GIF version

Theorem sssigagen2 32014
Description: A subset of the generating set is also a subset of the generated sigma-algebra. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
sssigagen2 ((𝐴𝑉𝐵𝐴) → 𝐵 ⊆ (sigaGen‘𝐴))

Proof of Theorem sssigagen2
StepHypRef Expression
1 simpr 484 . 2 ((𝐴𝑉𝐵𝐴) → 𝐵𝐴)
2 sssigagen 32013 . . 3 (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))
32adantr 480 . 2 ((𝐴𝑉𝐵𝐴) → 𝐴 ⊆ (sigaGen‘𝐴))
41, 3sstrd 3927 1 ((𝐴𝑉𝐵𝐴) → 𝐵 ⊆ (sigaGen‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wss 3883  cfv 6418  sigaGencsigagen 32006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-siga 31977  df-sigagen 32007
This theorem is referenced by:  sxbrsigalem5  32155
  Copyright terms: Public domain W3C validator