Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgrfv Structured version   Visualization version   GIF version

Theorem stgrfv 47920
Description: The star graph SN. (Contributed by AV, 10-Sep-2025.)
Assertion
Ref Expression
stgrfv (𝑁 ∈ ℕ0 → (StarGr‘𝑁) = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
Distinct variable group:   𝑒,𝑁,𝑥

Proof of Theorem stgrfv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-stgr 47919 . . 3 StarGr = (𝑛 ∈ ℕ0 ↦ {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩})
21a1i 11 . 2 (𝑁 ∈ ℕ0 → StarGr = (𝑛 ∈ ℕ0 ↦ {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩}))
3 oveq2 7439 . . . . 5 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
43opeq2d 4880 . . . 4 (𝑛 = 𝑁 → ⟨(Base‘ndx), (0...𝑛)⟩ = ⟨(Base‘ndx), (0...𝑁)⟩)
53pweqd 4617 . . . . . . 7 (𝑛 = 𝑁 → 𝒫 (0...𝑛) = 𝒫 (0...𝑁))
6 oveq2 7439 . . . . . . . 8 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
76rexeqdv 3327 . . . . . . 7 (𝑛 = 𝑁 → (∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}))
85, 7rabeqbidv 3455 . . . . . 6 (𝑛 = 𝑁 → {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}} = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
98reseq2d 5997 . . . . 5 (𝑛 = 𝑁 → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}}) = ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}))
109opeq2d 4880 . . . 4 (𝑛 = 𝑁 → ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩ = ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩)
114, 10preq12d 4741 . . 3 (𝑛 = 𝑁 → {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩} = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
1211adantl 481 . 2 ((𝑁 ∈ ℕ0𝑛 = 𝑁) → {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩} = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
13 id 22 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
14 prex 5437 . . 3 {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩} ∈ V
1514a1i 11 . 2 (𝑁 ∈ ℕ0 → {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩} ∈ V)
162, 12, 13, 15fvmptd 7023 1 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  Vcvv 3480  𝒫 cpw 4600  {cpr 4628  cop 4632  cmpt 5225   I cid 5577  cres 5687  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  0cn0 12526  ...cfz 13547  ndxcnx 17230  Basecbs 17247  .efcedgf 29003  StarGrcstgr 47918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-stgr 47919
This theorem is referenced by:  stgrvtx  47921  stgriedg  47922  stgr0  47927  stgr1  47928
  Copyright terms: Public domain W3C validator