Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgrfv Structured version   Visualization version   GIF version

Theorem stgrfv 47913
Description: The star graph SN. (Contributed by AV, 10-Sep-2025.)
Assertion
Ref Expression
stgrfv (𝑁 ∈ ℕ0 → (StarGr‘𝑁) = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
Distinct variable group:   𝑒,𝑁,𝑥

Proof of Theorem stgrfv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-stgr 47912 . . 3 StarGr = (𝑛 ∈ ℕ0 ↦ {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩})
21a1i 11 . 2 (𝑁 ∈ ℕ0 → StarGr = (𝑛 ∈ ℕ0 ↦ {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩}))
3 oveq2 7411 . . . . 5 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
43opeq2d 4856 . . . 4 (𝑛 = 𝑁 → ⟨(Base‘ndx), (0...𝑛)⟩ = ⟨(Base‘ndx), (0...𝑁)⟩)
53pweqd 4592 . . . . . . 7 (𝑛 = 𝑁 → 𝒫 (0...𝑛) = 𝒫 (0...𝑁))
6 oveq2 7411 . . . . . . . 8 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
76rexeqdv 3306 . . . . . . 7 (𝑛 = 𝑁 → (∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}))
85, 7rabeqbidv 3434 . . . . . 6 (𝑛 = 𝑁 → {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}} = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
98reseq2d 5966 . . . . 5 (𝑛 = 𝑁 → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}}) = ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}))
109opeq2d 4856 . . . 4 (𝑛 = 𝑁 → ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩ = ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩)
114, 10preq12d 4717 . . 3 (𝑛 = 𝑁 → {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩} = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
1211adantl 481 . 2 ((𝑁 ∈ ℕ0𝑛 = 𝑁) → {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩} = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
13 id 22 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
14 prex 5407 . . 3 {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩} ∈ V
1514a1i 11 . 2 (𝑁 ∈ ℕ0 → {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩} ∈ V)
162, 12, 13, 15fvmptd 6992 1 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  Vcvv 3459  𝒫 cpw 4575  {cpr 4603  cop 4607  cmpt 5201   I cid 5547  cres 5656  cfv 6530  (class class class)co 7403  0cc0 11127  1c1 11128  0cn0 12499  ...cfz 13522  ndxcnx 17210  Basecbs 17226  .efcedgf 28913  StarGrcstgr 47911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-iota 6483  df-fun 6532  df-fv 6538  df-ov 7406  df-stgr 47912
This theorem is referenced by:  stgrvtx  47914  stgriedg  47915  stgr0  47920  stgr1  47921
  Copyright terms: Public domain W3C validator