Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgrfv Structured version   Visualization version   GIF version

Theorem stgrfv 47956
Description: The star graph SN. (Contributed by AV, 10-Sep-2025.)
Assertion
Ref Expression
stgrfv (𝑁 ∈ ℕ0 → (StarGr‘𝑁) = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
Distinct variable group:   𝑒,𝑁,𝑥

Proof of Theorem stgrfv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-stgr 47955 . . 3 StarGr = (𝑛 ∈ ℕ0 ↦ {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩})
21a1i 11 . 2 (𝑁 ∈ ℕ0 → StarGr = (𝑛 ∈ ℕ0 ↦ {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩}))
3 oveq2 7398 . . . . 5 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
43opeq2d 4847 . . . 4 (𝑛 = 𝑁 → ⟨(Base‘ndx), (0...𝑛)⟩ = ⟨(Base‘ndx), (0...𝑁)⟩)
53pweqd 4583 . . . . . . 7 (𝑛 = 𝑁 → 𝒫 (0...𝑛) = 𝒫 (0...𝑁))
6 oveq2 7398 . . . . . . . 8 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
76rexeqdv 3302 . . . . . . 7 (𝑛 = 𝑁 → (∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}))
85, 7rabeqbidv 3427 . . . . . 6 (𝑛 = 𝑁 → {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}} = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
98reseq2d 5953 . . . . 5 (𝑛 = 𝑁 → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}}) = ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}))
109opeq2d 4847 . . . 4 (𝑛 = 𝑁 → ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩ = ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩)
114, 10preq12d 4708 . . 3 (𝑛 = 𝑁 → {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩} = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
1211adantl 481 . 2 ((𝑁 ∈ ℕ0𝑛 = 𝑁) → {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩} = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
13 id 22 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
14 prex 5395 . . 3 {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩} ∈ V
1514a1i 11 . 2 (𝑁 ∈ ℕ0 → {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩} ∈ V)
162, 12, 13, 15fvmptd 6978 1 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  Vcvv 3450  𝒫 cpw 4566  {cpr 4594  cop 4598  cmpt 5191   I cid 5535  cres 5643  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  0cn0 12449  ...cfz 13475  ndxcnx 17170  Basecbs 17186  .efcedgf 28922  StarGrcstgr 47954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-stgr 47955
This theorem is referenced by:  stgrvtx  47957  stgriedg  47958  stgr0  47963  stgr1  47964
  Copyright terms: Public domain W3C validator