Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgrfv Structured version   Visualization version   GIF version

Theorem stgrfv 47855
Description: The star graph SN. (Contributed by AV, 10-Sep-2025.)
Assertion
Ref Expression
stgrfv (𝑁 ∈ ℕ0 → (StarGr‘𝑁) = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
Distinct variable group:   𝑒,𝑁,𝑥

Proof of Theorem stgrfv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-stgr 47854 . . 3 StarGr = (𝑛 ∈ ℕ0 ↦ {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩})
21a1i 11 . 2 (𝑁 ∈ ℕ0 → StarGr = (𝑛 ∈ ℕ0 ↦ {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩}))
3 oveq2 7438 . . . . 5 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
43opeq2d 4884 . . . 4 (𝑛 = 𝑁 → ⟨(Base‘ndx), (0...𝑛)⟩ = ⟨(Base‘ndx), (0...𝑁)⟩)
53pweqd 4621 . . . . . . 7 (𝑛 = 𝑁 → 𝒫 (0...𝑛) = 𝒫 (0...𝑁))
6 oveq2 7438 . . . . . . . 8 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
76rexeqdv 3324 . . . . . . 7 (𝑛 = 𝑁 → (∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}))
85, 7rabeqbidv 3451 . . . . . 6 (𝑛 = 𝑁 → {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}} = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
98reseq2d 5999 . . . . 5 (𝑛 = 𝑁 → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}}) = ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}))
109opeq2d 4884 . . . 4 (𝑛 = 𝑁 → ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩ = ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩)
114, 10preq12d 4745 . . 3 (𝑛 = 𝑁 → {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩} = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
1211adantl 481 . 2 ((𝑁 ∈ ℕ0𝑛 = 𝑁) → {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩} = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
13 id 22 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
14 prex 5442 . . 3 {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩} ∈ V
1514a1i 11 . 2 (𝑁 ∈ ℕ0 → {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩} ∈ V)
162, 12, 13, 15fvmptd 7022 1 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) = {⟨(Base‘ndx), (0...𝑁)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  wrex 3067  {crab 3432  Vcvv 3477  𝒫 cpw 4604  {cpr 4632  cop 4636  cmpt 5230   I cid 5581  cres 5690  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153  0cn0 12523  ...cfz 13543  ndxcnx 17226  Basecbs 17244  .efcedgf 29017  StarGrcstgr 47853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-res 5700  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433  df-stgr 47854
This theorem is referenced by:  stgrvtx  47856  stgriedg  47857  stgr0  47862  stgr1  47863
  Copyright terms: Public domain W3C validator