| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stgr0 | Structured version Visualization version GIF version | ||
| Description: The star graph S0 consists of a single vertex without edges. (Contributed by AV, 11-Sep-2025.) |
| Ref | Expression |
|---|---|
| stgr0 | ⊢ (StarGr‘0) = {〈(Base‘ndx), {0}〉, 〈(.ef‘ndx), ∅〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12464 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 2 | stgrfv 47956 | . . 3 ⊢ (0 ∈ ℕ0 → (StarGr‘0) = {〈(Base‘ndx), (0...0)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}})〉}) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (StarGr‘0) = {〈(Base‘ndx), (0...0)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}})〉} |
| 4 | fz0sn 13595 | . . . 4 ⊢ (0...0) = {0} | |
| 5 | 4 | opeq2i 4844 | . . 3 ⊢ 〈(Base‘ndx), (0...0)〉 = 〈(Base‘ndx), {0}〉 |
| 6 | rabeq0 4354 | . . . . . . 7 ⊢ ({𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}} = ∅ ↔ ∀𝑒 ∈ 𝒫 (0...0) ¬ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}) | |
| 7 | noel 4304 | . . . . . . . . . . . 12 ⊢ ¬ 𝑥 ∈ ∅ | |
| 8 | 7 | pm2.21i 119 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ∅ → ¬ 𝑒 = {0, 𝑥}) |
| 9 | fz10 13513 | . . . . . . . . . . 11 ⊢ (1...0) = ∅ | |
| 10 | 8, 9 | eleq2s 2847 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1...0) → ¬ 𝑒 = {0, 𝑥}) |
| 11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (𝑒 ∈ 𝒫 (0...0) → (𝑥 ∈ (1...0) → ¬ 𝑒 = {0, 𝑥})) |
| 12 | 11 | ralrimiv 3125 | . . . . . . . 8 ⊢ (𝑒 ∈ 𝒫 (0...0) → ∀𝑥 ∈ (1...0) ¬ 𝑒 = {0, 𝑥}) |
| 13 | ralnex 3056 | . . . . . . . 8 ⊢ (∀𝑥 ∈ (1...0) ¬ 𝑒 = {0, 𝑥} ↔ ¬ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}) | |
| 14 | 12, 13 | sylib 218 | . . . . . . 7 ⊢ (𝑒 ∈ 𝒫 (0...0) → ¬ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}) |
| 15 | 6, 14 | mprgbir 3052 | . . . . . 6 ⊢ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}} = ∅ |
| 16 | 15 | reseq2i 5950 | . . . . 5 ⊢ ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}}) = ( I ↾ ∅) |
| 17 | res0 5957 | . . . . 5 ⊢ ( I ↾ ∅) = ∅ | |
| 18 | 16, 17 | eqtri 2753 | . . . 4 ⊢ ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}}) = ∅ |
| 19 | 18 | opeq2i 4844 | . . 3 ⊢ 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}})〉 = 〈(.ef‘ndx), ∅〉 |
| 20 | 5, 19 | preq12i 4705 | . 2 ⊢ {〈(Base‘ndx), (0...0)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}})〉} = {〈(Base‘ndx), {0}〉, 〈(.ef‘ndx), ∅〉} |
| 21 | 3, 20 | eqtri 2753 | 1 ⊢ (StarGr‘0) = {〈(Base‘ndx), {0}〉, 〈(.ef‘ndx), ∅〉} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 ∅c0 4299 𝒫 cpw 4566 {csn 4592 {cpr 4594 〈cop 4598 I cid 5535 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 ℕ0cn0 12449 ...cfz 13475 ndxcnx 17170 Basecbs 17186 .efcedgf 28922 StarGrcstgr 47954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-stgr 47955 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |