| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stgr0 | Structured version Visualization version GIF version | ||
| Description: The star graph S0 consists of a single vertex without edges. (Contributed by AV, 11-Sep-2025.) |
| Ref | Expression |
|---|---|
| stgr0 | ⊢ (StarGr‘0) = {〈(Base‘ndx), {0}〉, 〈(.ef‘ndx), ∅〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12433 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 2 | stgrfv 47945 | . . 3 ⊢ (0 ∈ ℕ0 → (StarGr‘0) = {〈(Base‘ndx), (0...0)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}})〉}) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (StarGr‘0) = {〈(Base‘ndx), (0...0)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}})〉} |
| 4 | fz0sn 13564 | . . . 4 ⊢ (0...0) = {0} | |
| 5 | 4 | opeq2i 4837 | . . 3 ⊢ 〈(Base‘ndx), (0...0)〉 = 〈(Base‘ndx), {0}〉 |
| 6 | rabeq0 4347 | . . . . . . 7 ⊢ ({𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}} = ∅ ↔ ∀𝑒 ∈ 𝒫 (0...0) ¬ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}) | |
| 7 | noel 4297 | . . . . . . . . . . . 12 ⊢ ¬ 𝑥 ∈ ∅ | |
| 8 | 7 | pm2.21i 119 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ∅ → ¬ 𝑒 = {0, 𝑥}) |
| 9 | fz10 13482 | . . . . . . . . . . 11 ⊢ (1...0) = ∅ | |
| 10 | 8, 9 | eleq2s 2846 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1...0) → ¬ 𝑒 = {0, 𝑥}) |
| 11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (𝑒 ∈ 𝒫 (0...0) → (𝑥 ∈ (1...0) → ¬ 𝑒 = {0, 𝑥})) |
| 12 | 11 | ralrimiv 3124 | . . . . . . . 8 ⊢ (𝑒 ∈ 𝒫 (0...0) → ∀𝑥 ∈ (1...0) ¬ 𝑒 = {0, 𝑥}) |
| 13 | ralnex 3055 | . . . . . . . 8 ⊢ (∀𝑥 ∈ (1...0) ¬ 𝑒 = {0, 𝑥} ↔ ¬ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}) | |
| 14 | 12, 13 | sylib 218 | . . . . . . 7 ⊢ (𝑒 ∈ 𝒫 (0...0) → ¬ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}) |
| 15 | 6, 14 | mprgbir 3051 | . . . . . 6 ⊢ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}} = ∅ |
| 16 | 15 | reseq2i 5936 | . . . . 5 ⊢ ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}}) = ( I ↾ ∅) |
| 17 | res0 5943 | . . . . 5 ⊢ ( I ↾ ∅) = ∅ | |
| 18 | 16, 17 | eqtri 2752 | . . . 4 ⊢ ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}}) = ∅ |
| 19 | 18 | opeq2i 4837 | . . 3 ⊢ 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}})〉 = 〈(.ef‘ndx), ∅〉 |
| 20 | 5, 19 | preq12i 4698 | . 2 ⊢ {〈(Base‘ndx), (0...0)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...0) ∣ ∃𝑥 ∈ (1...0)𝑒 = {0, 𝑥}})〉} = {〈(Base‘ndx), {0}〉, 〈(.ef‘ndx), ∅〉} |
| 21 | 3, 20 | eqtri 2752 | 1 ⊢ (StarGr‘0) = {〈(Base‘ndx), {0}〉, 〈(.ef‘ndx), ∅〉} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3402 ∅c0 4292 𝒫 cpw 4559 {csn 4585 {cpr 4587 〈cop 4591 I cid 5525 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 ℕ0cn0 12418 ...cfz 13444 ndxcnx 17139 Basecbs 17155 .efcedgf 28968 StarGrcstgr 47943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-stgr 47944 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |