![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subfacval | Structured version Visualization version GIF version |
Description: The subfactorial is defined as the number of derangements (see derangval 35152) of the set (1...𝑁). (Contributed by Mario Carneiro, 21-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
subfac.n | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
Ref | Expression |
---|---|
subfacval | ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = (𝐷‘(1...𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7439 | . . 3 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
2 | 1 | fveq2d 6911 | . 2 ⊢ (𝑛 = 𝑁 → (𝐷‘(1...𝑛)) = (𝐷‘(1...𝑁))) |
3 | subfac.n | . 2 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | |
4 | fvex 6920 | . 2 ⊢ (𝐷‘(1...𝑁)) ∈ V | |
5 | 2, 3, 4 | fvmpt 7016 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = (𝐷‘(1...𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ≠ wne 2938 ∀wral 3059 ↦ cmpt 5231 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 1c1 11154 ℕ0cn0 12524 ...cfz 13544 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 |
This theorem is referenced by: derangen2 35159 subfaclefac 35161 subfac0 35162 subfac1 35163 subfacp1lem6 35170 |
Copyright terms: Public domain | W3C validator |