Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacval Structured version   Visualization version   GIF version

Theorem subfacval 35238
Description: The subfactorial is defined as the number of derangements (see derangval 35232) of the set (1...𝑁). (Contributed by Mario Carneiro, 21-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfacval (𝑁 ∈ ℕ0 → (𝑆𝑁) = (𝐷‘(1...𝑁)))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfacval
StepHypRef Expression
1 oveq2 7360 . . 3 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21fveq2d 6832 . 2 (𝑛 = 𝑁 → (𝐷‘(1...𝑛)) = (𝐷‘(1...𝑁)))
3 subfac.n . 2 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
4 fvex 6841 . 2 (𝐷‘(1...𝑁)) ∈ V
52, 3, 4fvmpt 6935 1 (𝑁 ∈ ℕ0 → (𝑆𝑁) = (𝐷‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048  cmpt 5174  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Fincfn 8875  1c1 11014  0cn0 12388  ...cfz 13409  chash 14239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355
This theorem is referenced by:  derangen2  35239  subfaclefac  35241  subfac0  35242  subfac1  35243  subfacp1lem6  35250
  Copyright terms: Public domain W3C validator