| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subfacval | Structured version Visualization version GIF version | ||
| Description: The subfactorial is defined as the number of derangements (see derangval 35161) of the set (1...𝑁). (Contributed by Mario Carneiro, 21-Jan-2015.) |
| Ref | Expression |
|---|---|
| derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
| subfac.n | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
| Ref | Expression |
|---|---|
| subfacval | ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = (𝐷‘(1...𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7398 | . . 3 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
| 2 | 1 | fveq2d 6865 | . 2 ⊢ (𝑛 = 𝑁 → (𝐷‘(1...𝑛)) = (𝐷‘(1...𝑁))) |
| 3 | subfac.n | . 2 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | |
| 4 | fvex 6874 | . 2 ⊢ (𝐷‘(1...𝑁)) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6971 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = (𝐷‘(1...𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ≠ wne 2926 ∀wral 3045 ↦ cmpt 5191 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 1c1 11076 ℕ0cn0 12449 ...cfz 13475 ♯chash 14302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: derangen2 35168 subfaclefac 35170 subfac0 35171 subfac1 35172 subfacp1lem6 35179 |
| Copyright terms: Public domain | W3C validator |