Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacval Structured version   Visualization version   GIF version

Theorem subfacval 33135
Description: The subfactorial is defined as the number of derangements (see derangval 33129) of the set (1...𝑁). (Contributed by Mario Carneiro, 21-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfacval (𝑁 ∈ ℕ0 → (𝑆𝑁) = (𝐷‘(1...𝑁)))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfacval
StepHypRef Expression
1 oveq2 7283 . . 3 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21fveq2d 6778 . 2 (𝑛 = 𝑁 → (𝐷‘(1...𝑛)) = (𝐷‘(1...𝑁)))
3 subfac.n . 2 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
4 fvex 6787 . 2 (𝐷‘(1...𝑁)) ∈ V
52, 3, 4fvmpt 6875 1 (𝑁 ∈ ℕ0 → (𝑆𝑁) = (𝐷‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  cmpt 5157  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Fincfn 8733  1c1 10872  0cn0 12233  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278
This theorem is referenced by:  derangen2  33136  subfaclefac  33138  subfac0  33139  subfac1  33140  subfacp1lem6  33147
  Copyright terms: Public domain W3C validator