Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > subfacval | Structured version Visualization version GIF version |
Description: The subfactorial is defined as the number of derangements (see derangval 33137) of the set (1...𝑁). (Contributed by Mario Carneiro, 21-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
subfac.n | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
Ref | Expression |
---|---|
subfacval | ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = (𝐷‘(1...𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7275 | . . 3 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
2 | 1 | fveq2d 6770 | . 2 ⊢ (𝑛 = 𝑁 → (𝐷‘(1...𝑛)) = (𝐷‘(1...𝑁))) |
3 | subfac.n | . 2 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | |
4 | fvex 6779 | . 2 ⊢ (𝐷‘(1...𝑁)) ∈ V | |
5 | 2, 3, 4 | fvmpt 6867 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = (𝐷‘(1...𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ≠ wne 2943 ∀wral 3064 ↦ cmpt 5156 –1-1-onto→wf1o 6425 ‘cfv 6426 (class class class)co 7267 Fincfn 8720 1c1 10882 ℕ0cn0 12243 ...cfz 13249 ♯chash 14054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-iota 6384 df-fun 6428 df-fv 6434 df-ov 7270 |
This theorem is referenced by: derangen2 33144 subfaclefac 33146 subfac0 33147 subfac1 33148 subfacp1lem6 33155 |
Copyright terms: Public domain | W3C validator |