Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacval Structured version   Visualization version   GIF version

Theorem subfacval 35145
Description: The subfactorial is defined as the number of derangements (see derangval 35139) of the set (1...𝑁). (Contributed by Mario Carneiro, 21-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfacval (𝑁 ∈ ℕ0 → (𝑆𝑁) = (𝐷‘(1...𝑁)))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfacval
StepHypRef Expression
1 oveq2 7361 . . 3 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21fveq2d 6830 . 2 (𝑛 = 𝑁 → (𝐷‘(1...𝑛)) = (𝐷‘(1...𝑁)))
3 subfac.n . 2 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
4 fvex 6839 . 2 (𝐷‘(1...𝑁)) ∈ V
52, 3, 4fvmpt 6934 1 (𝑁 ∈ ℕ0 → (𝑆𝑁) = (𝐷‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  cmpt 5176  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Fincfn 8879  1c1 11029  0cn0 12402  ...cfz 13428  chash 14255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356
This theorem is referenced by:  derangen2  35146  subfaclefac  35148  subfac0  35149  subfac1  35150  subfacp1lem6  35157
  Copyright terms: Public domain W3C validator