Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclefac Structured version   Visualization version   GIF version

Theorem subfaclefac 35241
Description: The subfactorial is less than the factorial. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfaclefac (𝑁 ∈ ℕ0 → (𝑆𝑁) ≤ (!‘𝑁))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfaclefac
StepHypRef Expression
1 anidm 564 . . . . . 6 ((𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)) ↔ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))
21abbii 2800 . . . . 5 {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} = {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}
3 fzfid 13882 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
4 deranglem 35231 . . . . . 6 ((1...𝑁) ∈ Fin → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} ∈ Fin)
53, 4syl 17 . . . . 5 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} ∈ Fin)
62, 5eqeltrrid 2838 . . . 4 (𝑁 ∈ ℕ0 → {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin)
7 simpl 482 . . . . 5 ((𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦) → 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))
87ss2abi 4015 . . . 4 {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ⊆ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}
9 ssdomg 8929 . . . 4 ({𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin → ({𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ⊆ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
106, 8, 9mpisyl 21 . . 3 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
11 deranglem 35231 . . . . 5 ((1...𝑁) ∈ Fin → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin)
123, 11syl 17 . . . 4 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin)
13 hashdom 14288 . . . 4 (({𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin ∧ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin) → ((♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ↔ {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1412, 6, 13syl2anc 584 . . 3 (𝑁 ∈ ℕ0 → ((♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ↔ {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1510, 14mpbird 257 . 2 (𝑁 ∈ ℕ0 → (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
16 derang.d . . . 4 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
17 subfac.n . . . 4 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
1816, 17subfacval 35238 . . 3 (𝑁 ∈ ℕ0 → (𝑆𝑁) = (𝐷‘(1...𝑁)))
1916derangval 35232 . . . 4 ((1...𝑁) ∈ Fin → (𝐷‘(1...𝑁)) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
203, 19syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝐷‘(1...𝑁)) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
2118, 20eqtrd 2768 . 2 (𝑁 ∈ ℕ0 → (𝑆𝑁) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
22 hashfac 14367 . . . 4 ((1...𝑁) ∈ Fin → (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = (!‘(♯‘(1...𝑁))))
233, 22syl 17 . . 3 (𝑁 ∈ ℕ0 → (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = (!‘(♯‘(1...𝑁))))
24 hashfz1 14255 . . . 4 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2524fveq2d 6832 . . 3 (𝑁 ∈ ℕ0 → (!‘(♯‘(1...𝑁))) = (!‘𝑁))
2623, 25eqtr2d 2769 . 2 (𝑁 ∈ ℕ0 → (!‘𝑁) = (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
2715, 21, 263brtr4d 5125 1 (𝑁 ∈ ℕ0 → (𝑆𝑁) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048  wss 3898   class class class wbr 5093  cmpt 5174  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  cdom 8873  Fincfn 8875  1c1 11014  cle 11154  0cn0 12388  ...cfz 13409  !cfa 14182  chash 14239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-seq 13911  df-fac 14183  df-bc 14212  df-hash 14240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator