Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclefac Structured version   Visualization version   GIF version

Theorem subfaclefac 35208
Description: The subfactorial is less than the factorial. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfaclefac (𝑁 ∈ ℕ0 → (𝑆𝑁) ≤ (!‘𝑁))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfaclefac
StepHypRef Expression
1 anidm 564 . . . . . 6 ((𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)) ↔ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))
21abbii 2798 . . . . 5 {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} = {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}
3 fzfid 13877 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
4 deranglem 35198 . . . . . 6 ((1...𝑁) ∈ Fin → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} ∈ Fin)
53, 4syl 17 . . . . 5 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} ∈ Fin)
62, 5eqeltrrid 2836 . . . 4 (𝑁 ∈ ℕ0 → {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin)
7 simpl 482 . . . . 5 ((𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦) → 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))
87ss2abi 4018 . . . 4 {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ⊆ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}
9 ssdomg 8922 . . . 4 ({𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin → ({𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ⊆ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
106, 8, 9mpisyl 21 . . 3 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
11 deranglem 35198 . . . . 5 ((1...𝑁) ∈ Fin → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin)
123, 11syl 17 . . . 4 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin)
13 hashdom 14283 . . . 4 (({𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin ∧ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin) → ((♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ↔ {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1412, 6, 13syl2anc 584 . . 3 (𝑁 ∈ ℕ0 → ((♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ↔ {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1510, 14mpbird 257 . 2 (𝑁 ∈ ℕ0 → (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
16 derang.d . . . 4 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
17 subfac.n . . . 4 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
1816, 17subfacval 35205 . . 3 (𝑁 ∈ ℕ0 → (𝑆𝑁) = (𝐷‘(1...𝑁)))
1916derangval 35199 . . . 4 ((1...𝑁) ∈ Fin → (𝐷‘(1...𝑁)) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
203, 19syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝐷‘(1...𝑁)) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
2118, 20eqtrd 2766 . 2 (𝑁 ∈ ℕ0 → (𝑆𝑁) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
22 hashfac 14362 . . . 4 ((1...𝑁) ∈ Fin → (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = (!‘(♯‘(1...𝑁))))
233, 22syl 17 . . 3 (𝑁 ∈ ℕ0 → (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = (!‘(♯‘(1...𝑁))))
24 hashfz1 14250 . . . 4 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2524fveq2d 6826 . . 3 (𝑁 ∈ ℕ0 → (!‘(♯‘(1...𝑁))) = (!‘𝑁))
2623, 25eqtr2d 2767 . 2 (𝑁 ∈ ℕ0 → (!‘𝑁) = (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
2715, 21, 263brtr4d 5123 1 (𝑁 ∈ ℕ0 → (𝑆𝑁) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  wss 3902   class class class wbr 5091  cmpt 5172  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cdom 8867  Fincfn 8869  1c1 11004  cle 11144  0cn0 12378  ...cfz 13404  !cfa 14177  chash 14234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-seq 13906  df-fac 14178  df-bc 14207  df-hash 14235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator