Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclefac Structured version   Visualization version   GIF version

Theorem subfaclefac 32536
Description: The subfactorial is less than the factorial. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfaclefac (𝑁 ∈ ℕ0 → (𝑆𝑁) ≤ (!‘𝑁))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfaclefac
StepHypRef Expression
1 anidm 568 . . . . . 6 ((𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)) ↔ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))
21abbii 2863 . . . . 5 {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} = {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}
3 fzfid 13336 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
4 deranglem 32526 . . . . . 6 ((1...𝑁) ∈ Fin → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} ∈ Fin)
53, 4syl 17 . . . . 5 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} ∈ Fin)
62, 5eqeltrrid 2895 . . . 4 (𝑁 ∈ ℕ0 → {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin)
7 simpl 486 . . . . 5 ((𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦) → 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))
87ss2abi 3994 . . . 4 {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ⊆ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}
9 ssdomg 8538 . . . 4 ({𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin → ({𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ⊆ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
106, 8, 9mpisyl 21 . . 3 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
11 deranglem 32526 . . . . 5 ((1...𝑁) ∈ Fin → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin)
123, 11syl 17 . . . 4 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin)
13 hashdom 13736 . . . 4 (({𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin ∧ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin) → ((♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ↔ {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1412, 6, 13syl2anc 587 . . 3 (𝑁 ∈ ℕ0 → ((♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ↔ {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1510, 14mpbird 260 . 2 (𝑁 ∈ ℕ0 → (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
16 derang.d . . . 4 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
17 subfac.n . . . 4 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
1816, 17subfacval 32533 . . 3 (𝑁 ∈ ℕ0 → (𝑆𝑁) = (𝐷‘(1...𝑁)))
1916derangval 32527 . . . 4 ((1...𝑁) ∈ Fin → (𝐷‘(1...𝑁)) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
203, 19syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝐷‘(1...𝑁)) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
2118, 20eqtrd 2833 . 2 (𝑁 ∈ ℕ0 → (𝑆𝑁) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
22 hashfac 13812 . . . 4 ((1...𝑁) ∈ Fin → (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = (!‘(♯‘(1...𝑁))))
233, 22syl 17 . . 3 (𝑁 ∈ ℕ0 → (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = (!‘(♯‘(1...𝑁))))
24 hashfz1 13702 . . . 4 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2524fveq2d 6649 . . 3 (𝑁 ∈ ℕ0 → (!‘(♯‘(1...𝑁))) = (!‘𝑁))
2623, 25eqtr2d 2834 . 2 (𝑁 ∈ ℕ0 → (!‘𝑁) = (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
2715, 21, 263brtr4d 5062 1 (𝑁 ∈ ℕ0 → (𝑆𝑁) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wne 2987  wral 3106  wss 3881   class class class wbr 5030  cmpt 5110  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cdom 8490  Fincfn 8492  1c1 10527  cle 10665  0cn0 11885  ...cfz 12885  !cfa 13629  chash 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-fac 13630  df-bc 13659  df-hash 13687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator