Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclefac Structured version   Visualization version   GIF version

Theorem subfaclefac 33038
Description: The subfactorial is less than the factorial. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfaclefac (𝑁 ∈ ℕ0 → (𝑆𝑁) ≤ (!‘𝑁))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfaclefac
StepHypRef Expression
1 anidm 564 . . . . . 6 ((𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)) ↔ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))
21abbii 2809 . . . . 5 {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} = {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}
3 fzfid 13621 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
4 deranglem 33028 . . . . . 6 ((1...𝑁) ∈ Fin → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} ∈ Fin)
53, 4syl 17 . . . . 5 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))} ∈ Fin)
62, 5eqeltrrid 2844 . . . 4 (𝑁 ∈ ℕ0 → {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin)
7 simpl 482 . . . . 5 ((𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦) → 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))
87ss2abi 3996 . . . 4 {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ⊆ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}
9 ssdomg 8741 . . . 4 ({𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin → ({𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ⊆ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
106, 8, 9mpisyl 21 . . 3 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
11 deranglem 33028 . . . . 5 ((1...𝑁) ∈ Fin → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin)
123, 11syl 17 . . . 4 (𝑁 ∈ ℕ0 → {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin)
13 hashdom 14022 . . . 4 (({𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ∈ Fin ∧ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin) → ((♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ↔ {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1412, 6, 13syl2anc 583 . . 3 (𝑁 ∈ ℕ0 → ((♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ↔ {𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)} ≼ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1510, 14mpbird 256 . 2 (𝑁 ∈ ℕ0 → (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}) ≤ (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
16 derang.d . . . 4 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
17 subfac.n . . . 4 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
1816, 17subfacval 33035 . . 3 (𝑁 ∈ ℕ0 → (𝑆𝑁) = (𝐷‘(1...𝑁)))
1916derangval 33029 . . . 4 ((1...𝑁) ∈ Fin → (𝐷‘(1...𝑁)) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
203, 19syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝐷‘(1...𝑁)) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
2118, 20eqtrd 2778 . 2 (𝑁 ∈ ℕ0 → (𝑆𝑁) = (♯‘{𝑓 ∣ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ∧ ∀𝑦 ∈ (1...𝑁)(𝑓𝑦) ≠ 𝑦)}))
22 hashfac 14100 . . . 4 ((1...𝑁) ∈ Fin → (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = (!‘(♯‘(1...𝑁))))
233, 22syl 17 . . 3 (𝑁 ∈ ℕ0 → (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = (!‘(♯‘(1...𝑁))))
24 hashfz1 13988 . . . 4 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2524fveq2d 6760 . . 3 (𝑁 ∈ ℕ0 → (!‘(♯‘(1...𝑁))) = (!‘𝑁))
2623, 25eqtr2d 2779 . 2 (𝑁 ∈ ℕ0 → (!‘𝑁) = (♯‘{𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
2715, 21, 263brtr4d 5102 1 (𝑁 ∈ ℕ0 → (𝑆𝑁) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wss 3883   class class class wbr 5070  cmpt 5153  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cdom 8689  Fincfn 8691  1c1 10803  cle 10941  0cn0 12163  ...cfz 13168  !cfa 13915  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-fac 13916  df-bc 13945  df-hash 13973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator