Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangen | Structured version Visualization version GIF version |
Description: The derangement number is a cardinal invariant, i.e. it only depends on the size of a set and not on its contents. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
Ref | Expression |
---|---|
derangen | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) = (𝐷‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derang.d | . . 3 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
2 | 1 | derangenlem 33033 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) ≤ (𝐷‘𝐵)) |
3 | ensym 8744 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐵 ≈ 𝐴) |
5 | enfi 8933 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | |
6 | 5 | biimpar 477 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
7 | 1 | derangenlem 33033 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐴 ∈ Fin) → (𝐷‘𝐵) ≤ (𝐷‘𝐴)) |
8 | 4, 6, 7 | syl2anc 583 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐵) ≤ (𝐷‘𝐴)) |
9 | 1 | derangf 33030 | . . . . 5 ⊢ 𝐷:Fin⟶ℕ0 |
10 | 9 | ffvelrni 6942 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) ∈ ℕ0) |
11 | 6, 10 | syl 17 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) ∈ ℕ0) |
12 | 9 | ffvelrni 6942 | . . . 4 ⊢ (𝐵 ∈ Fin → (𝐷‘𝐵) ∈ ℕ0) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐵) ∈ ℕ0) |
14 | nn0re 12172 | . . . 4 ⊢ ((𝐷‘𝐴) ∈ ℕ0 → (𝐷‘𝐴) ∈ ℝ) | |
15 | nn0re 12172 | . . . 4 ⊢ ((𝐷‘𝐵) ∈ ℕ0 → (𝐷‘𝐵) ∈ ℝ) | |
16 | letri3 10991 | . . . 4 ⊢ (((𝐷‘𝐴) ∈ ℝ ∧ (𝐷‘𝐵) ∈ ℝ) → ((𝐷‘𝐴) = (𝐷‘𝐵) ↔ ((𝐷‘𝐴) ≤ (𝐷‘𝐵) ∧ (𝐷‘𝐵) ≤ (𝐷‘𝐴)))) | |
17 | 14, 15, 16 | syl2an 595 | . . 3 ⊢ (((𝐷‘𝐴) ∈ ℕ0 ∧ (𝐷‘𝐵) ∈ ℕ0) → ((𝐷‘𝐴) = (𝐷‘𝐵) ↔ ((𝐷‘𝐴) ≤ (𝐷‘𝐵) ∧ (𝐷‘𝐵) ≤ (𝐷‘𝐴)))) |
18 | 11, 13, 17 | syl2anc 583 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ((𝐷‘𝐴) = (𝐷‘𝐵) ↔ ((𝐷‘𝐴) ≤ (𝐷‘𝐵) ∧ (𝐷‘𝐵) ≤ (𝐷‘𝐴)))) |
19 | 2, 8, 18 | mpbir2and 709 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) = (𝐷‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ≠ wne 2942 ∀wral 3063 class class class wbr 5070 ↦ cmpt 5153 –1-1-onto→wf1o 6417 ‘cfv 6418 ≈ cen 8688 Fincfn 8691 ℝcr 10801 ≤ cle 10941 ℕ0cn0 12163 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: derangen2 33036 |
Copyright terms: Public domain | W3C validator |