Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangen2 Structured version   Visualization version   GIF version

Theorem derangen2 35147
Description: Write the derangement number in terms of the subfactorial. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
derangen2 (𝐴 ∈ Fin → (𝐷𝐴) = (𝑆‘(♯‘𝐴)))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem derangen2
StepHypRef Expression
1 hashcl 14263 . . 3 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
2 derang.d . . . 4 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
3 subfac.n . . . 4 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
42, 3subfacval 35146 . . 3 ((♯‘𝐴) ∈ ℕ0 → (𝑆‘(♯‘𝐴)) = (𝐷‘(1...(♯‘𝐴))))
51, 4syl 17 . 2 (𝐴 ∈ Fin → (𝑆‘(♯‘𝐴)) = (𝐷‘(1...(♯‘𝐴))))
6 hashfz1 14253 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → (♯‘(1...(♯‘𝐴))) = (♯‘𝐴))
71, 6syl 17 . . . 4 (𝐴 ∈ Fin → (♯‘(1...(♯‘𝐴))) = (♯‘𝐴))
8 fzfid 13880 . . . . 5 (𝐴 ∈ Fin → (1...(♯‘𝐴)) ∈ Fin)
9 hashen 14254 . . . . 5 (((1...(♯‘𝐴)) ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘(1...(♯‘𝐴))) = (♯‘𝐴) ↔ (1...(♯‘𝐴)) ≈ 𝐴))
108, 9mpancom 688 . . . 4 (𝐴 ∈ Fin → ((♯‘(1...(♯‘𝐴))) = (♯‘𝐴) ↔ (1...(♯‘𝐴)) ≈ 𝐴))
117, 10mpbid 232 . . 3 (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴)
122derangen 35145 . . 3 (((1...(♯‘𝐴)) ≈ 𝐴𝐴 ∈ Fin) → (𝐷‘(1...(♯‘𝐴))) = (𝐷𝐴))
1311, 12mpancom 688 . 2 (𝐴 ∈ Fin → (𝐷‘(1...(♯‘𝐴))) = (𝐷𝐴))
145, 13eqtr2d 2765 1 (𝐴 ∈ Fin → (𝐷𝐴) = (𝑆‘(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044   class class class wbr 5092  cmpt 5173  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cen 8869  Fincfn 8872  1c1 11010  0cn0 12384  ...cfz 13410  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238
This theorem is referenced by:  subfacp1lem3  35155  subfacp1lem5  35157  derangfmla  35163
  Copyright terms: Public domain W3C validator