![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangen2 | Structured version Visualization version GIF version |
Description: Write the derangement number in terms of the subfactorial. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
subfac.n | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
Ref | Expression |
---|---|
derangen2 | ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (𝑆‘(♯‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 14392 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
2 | derang.d | . . . 4 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
3 | subfac.n | . . . 4 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | |
4 | 2, 3 | subfacval 35158 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ0 → (𝑆‘(♯‘𝐴)) = (𝐷‘(1...(♯‘𝐴)))) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → (𝑆‘(♯‘𝐴)) = (𝐷‘(1...(♯‘𝐴)))) |
6 | hashfz1 14382 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℕ0 → (♯‘(1...(♯‘𝐴))) = (♯‘𝐴)) | |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘(1...(♯‘𝐴))) = (♯‘𝐴)) |
8 | fzfid 14011 | . . . . 5 ⊢ (𝐴 ∈ Fin → (1...(♯‘𝐴)) ∈ Fin) | |
9 | hashen 14383 | . . . . 5 ⊢ (((1...(♯‘𝐴)) ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘(1...(♯‘𝐴))) = (♯‘𝐴) ↔ (1...(♯‘𝐴)) ≈ 𝐴)) | |
10 | 8, 9 | mpancom 688 | . . . 4 ⊢ (𝐴 ∈ Fin → ((♯‘(1...(♯‘𝐴))) = (♯‘𝐴) ↔ (1...(♯‘𝐴)) ≈ 𝐴)) |
11 | 7, 10 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴) |
12 | 2 | derangen 35157 | . . 3 ⊢ (((1...(♯‘𝐴)) ≈ 𝐴 ∧ 𝐴 ∈ Fin) → (𝐷‘(1...(♯‘𝐴))) = (𝐷‘𝐴)) |
13 | 11, 12 | mpancom 688 | . 2 ⊢ (𝐴 ∈ Fin → (𝐷‘(1...(♯‘𝐴))) = (𝐷‘𝐴)) |
14 | 5, 13 | eqtr2d 2776 | 1 ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (𝑆‘(♯‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ≠ wne 2938 ∀wral 3059 class class class wbr 5148 ↦ cmpt 5231 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 ≈ cen 8981 Fincfn 8984 1c1 11154 ℕ0cn0 12524 ...cfz 13544 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 |
This theorem is referenced by: subfacp1lem3 35167 subfacp1lem5 35169 derangfmla 35175 |
Copyright terms: Public domain | W3C validator |