Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangen2 | Structured version Visualization version GIF version |
Description: Write the derangement number in terms of the subfactorial. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
subfac.n | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
Ref | Expression |
---|---|
derangen2 | ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (𝑆‘(♯‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 14099 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
2 | derang.d | . . . 4 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
3 | subfac.n | . . . 4 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | |
4 | 2, 3 | subfacval 33163 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ0 → (𝑆‘(♯‘𝐴)) = (𝐷‘(1...(♯‘𝐴)))) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → (𝑆‘(♯‘𝐴)) = (𝐷‘(1...(♯‘𝐴)))) |
6 | hashfz1 14088 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℕ0 → (♯‘(1...(♯‘𝐴))) = (♯‘𝐴)) | |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘(1...(♯‘𝐴))) = (♯‘𝐴)) |
8 | fzfid 13721 | . . . . 5 ⊢ (𝐴 ∈ Fin → (1...(♯‘𝐴)) ∈ Fin) | |
9 | hashen 14089 | . . . . 5 ⊢ (((1...(♯‘𝐴)) ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘(1...(♯‘𝐴))) = (♯‘𝐴) ↔ (1...(♯‘𝐴)) ≈ 𝐴)) | |
10 | 8, 9 | mpancom 684 | . . . 4 ⊢ (𝐴 ∈ Fin → ((♯‘(1...(♯‘𝐴))) = (♯‘𝐴) ↔ (1...(♯‘𝐴)) ≈ 𝐴)) |
11 | 7, 10 | mpbid 231 | . . 3 ⊢ (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴) |
12 | 2 | derangen 33162 | . . 3 ⊢ (((1...(♯‘𝐴)) ≈ 𝐴 ∧ 𝐴 ∈ Fin) → (𝐷‘(1...(♯‘𝐴))) = (𝐷‘𝐴)) |
13 | 11, 12 | mpancom 684 | . 2 ⊢ (𝐴 ∈ Fin → (𝐷‘(1...(♯‘𝐴))) = (𝐷‘𝐴)) |
14 | 5, 13 | eqtr2d 2774 | 1 ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (𝑆‘(♯‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1537 ∈ wcel 2101 {cab 2710 ≠ wne 2938 ∀wral 3059 class class class wbr 5077 ↦ cmpt 5160 –1-1-onto→wf1o 6446 ‘cfv 6447 (class class class)co 7295 ≈ cen 8750 Fincfn 8753 1c1 10900 ℕ0cn0 12261 ...cfz 13267 ♯chash 14072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-oadd 8321 df-er 8518 df-map 8637 df-pm 8638 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-n0 12262 df-xnn0 12334 df-z 12348 df-uz 12611 df-fz 13268 df-hash 14073 |
This theorem is referenced by: subfacp1lem3 33172 subfacp1lem5 33174 derangfmla 33180 |
Copyright terms: Public domain | W3C validator |