![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangen2 | Structured version Visualization version GIF version |
Description: Write the derangement number in terms of the subfactorial. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
subfac.n | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
Ref | Expression |
---|---|
derangen2 | ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (𝑆‘(♯‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 13462 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
2 | derang.d | . . . 4 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
3 | subfac.n | . . . 4 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | |
4 | 2, 3 | subfacval 31754 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ0 → (𝑆‘(♯‘𝐴)) = (𝐷‘(1...(♯‘𝐴)))) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → (𝑆‘(♯‘𝐴)) = (𝐷‘(1...(♯‘𝐴)))) |
6 | hashfz1 13451 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℕ0 → (♯‘(1...(♯‘𝐴))) = (♯‘𝐴)) | |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘(1...(♯‘𝐴))) = (♯‘𝐴)) |
8 | fzfid 13091 | . . . . 5 ⊢ (𝐴 ∈ Fin → (1...(♯‘𝐴)) ∈ Fin) | |
9 | hashen 13452 | . . . . 5 ⊢ (((1...(♯‘𝐴)) ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘(1...(♯‘𝐴))) = (♯‘𝐴) ↔ (1...(♯‘𝐴)) ≈ 𝐴)) | |
10 | 8, 9 | mpancom 678 | . . . 4 ⊢ (𝐴 ∈ Fin → ((♯‘(1...(♯‘𝐴))) = (♯‘𝐴) ↔ (1...(♯‘𝐴)) ≈ 𝐴)) |
11 | 7, 10 | mpbid 224 | . . 3 ⊢ (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴) |
12 | 2 | derangen 31753 | . . 3 ⊢ (((1...(♯‘𝐴)) ≈ 𝐴 ∧ 𝐴 ∈ Fin) → (𝐷‘(1...(♯‘𝐴))) = (𝐷‘𝐴)) |
13 | 11, 12 | mpancom 678 | . 2 ⊢ (𝐴 ∈ Fin → (𝐷‘(1...(♯‘𝐴))) = (𝐷‘𝐴)) |
14 | 5, 13 | eqtr2d 2815 | 1 ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (𝑆‘(♯‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {cab 2763 ≠ wne 2969 ∀wral 3090 class class class wbr 4886 ↦ cmpt 4965 –1-1-onto→wf1o 6134 ‘cfv 6135 (class class class)co 6922 ≈ cen 8238 Fincfn 8241 1c1 10273 ℕ0cn0 11642 ...cfz 12643 ♯chash 13435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-n0 11643 df-xnn0 11715 df-z 11729 df-uz 11993 df-fz 12644 df-hash 13436 |
This theorem is referenced by: subfacp1lem3 31763 subfacp1lem5 31765 derangfmla 31771 |
Copyright terms: Public domain | W3C validator |