Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangen2 Structured version   Visualization version   GIF version

Theorem derangen2 35120
Description: Write the derangement number in terms of the subfactorial. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
derangen2 (𝐴 ∈ Fin → (𝐷𝐴) = (𝑆‘(♯‘𝐴)))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem derangen2
StepHypRef Expression
1 hashcl 14378 . . 3 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
2 derang.d . . . 4 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
3 subfac.n . . . 4 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
42, 3subfacval 35119 . . 3 ((♯‘𝐴) ∈ ℕ0 → (𝑆‘(♯‘𝐴)) = (𝐷‘(1...(♯‘𝐴))))
51, 4syl 17 . 2 (𝐴 ∈ Fin → (𝑆‘(♯‘𝐴)) = (𝐷‘(1...(♯‘𝐴))))
6 hashfz1 14368 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → (♯‘(1...(♯‘𝐴))) = (♯‘𝐴))
71, 6syl 17 . . . 4 (𝐴 ∈ Fin → (♯‘(1...(♯‘𝐴))) = (♯‘𝐴))
8 fzfid 13997 . . . . 5 (𝐴 ∈ Fin → (1...(♯‘𝐴)) ∈ Fin)
9 hashen 14369 . . . . 5 (((1...(♯‘𝐴)) ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘(1...(♯‘𝐴))) = (♯‘𝐴) ↔ (1...(♯‘𝐴)) ≈ 𝐴))
108, 9mpancom 688 . . . 4 (𝐴 ∈ Fin → ((♯‘(1...(♯‘𝐴))) = (♯‘𝐴) ↔ (1...(♯‘𝐴)) ≈ 𝐴))
117, 10mpbid 232 . . 3 (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴)
122derangen 35118 . . 3 (((1...(♯‘𝐴)) ≈ 𝐴𝐴 ∈ Fin) → (𝐷‘(1...(♯‘𝐴))) = (𝐷𝐴))
1311, 12mpancom 688 . 2 (𝐴 ∈ Fin → (𝐷‘(1...(♯‘𝐴))) = (𝐷𝐴))
145, 13eqtr2d 2770 1 (𝐴 ∈ Fin → (𝐷𝐴) = (𝑆‘(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {cab 2712  wne 2931  wral 3050   class class class wbr 5125  cmpt 5207  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7414  cen 8965  Fincfn 8968  1c1 11139  0cn0 12510  ...cfz 13530  chash 14352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-oadd 8493  df-er 8728  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-n0 12511  df-xnn0 12584  df-z 12598  df-uz 12862  df-fz 13531  df-hash 14353
This theorem is referenced by:  subfacp1lem3  35128  subfacp1lem5  35130  derangfmla  35136
  Copyright terms: Public domain W3C validator