MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubmgm Structured version   Visualization version   GIF version

Theorem subsubmgm 18693
Description: A submagma of a submagma is a submagma. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
subsubmgm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubmgm (𝑆 ∈ (SubMgm‘𝐺) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubmgm
StepHypRef Expression
1 eqid 2736 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
21submgmss 18688 . . . . . . 7 (𝐴 ∈ (SubMgm‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
32adantl 481 . . . . . 6 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
4 subsubmgm.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
54submgmbas 18692 . . . . . . 7 (𝑆 ∈ (SubMgm‘𝐺) → 𝑆 = (Base‘𝐻))
65adantr 480 . . . . . 6 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝑆 = (Base‘𝐻))
73, 6sseqtrrd 4001 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴𝑆)
8 eqid 2736 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
98submgmss 18688 . . . . . 6 (𝑆 ∈ (SubMgm‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
109adantr 480 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
117, 10sstrd 3974 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
124oveq1i 7420 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
13 ressabs 17274 . . . . . . 7 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
1412, 13eqtrid 2783 . . . . . 6 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
157, 14syldan 591 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
16 eqid 2736 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
1716submgmmgm 18691 . . . . . 6 (𝐴 ∈ (SubMgm‘𝐻) → (𝐻s 𝐴) ∈ Mgm)
1817adantl 481 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐻s 𝐴) ∈ Mgm)
1915, 18eqeltrrd 2836 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐺s 𝐴) ∈ Mgm)
20 submgmrcl 18678 . . . . . 6 (𝑆 ∈ (SubMgm‘𝐺) → 𝐺 ∈ Mgm)
2120adantr 480 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐺 ∈ Mgm)
22 eqid 2736 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
238, 22issubmgm2 18686 . . . . 5 (𝐺 ∈ Mgm → (𝐴 ∈ (SubMgm‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝐺s 𝐴) ∈ Mgm)))
2421, 23syl 17 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐴 ∈ (SubMgm‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝐺s 𝐴) ∈ Mgm)))
2511, 19, 24mpbir2and 713 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴 ∈ (SubMgm‘𝐺))
2625, 7jca 511 . 2 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆))
27 simprr 772 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
285adantr 480 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
2927, 28sseqtrd 4000 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3014adantrl 716 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
3122submgmmgm 18691 . . . . 5 (𝐴 ∈ (SubMgm‘𝐺) → (𝐺s 𝐴) ∈ Mgm)
3231ad2antrl 728 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Mgm)
3330, 32eqeltrd 2835 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Mgm)
344submgmmgm 18691 . . . . 5 (𝑆 ∈ (SubMgm‘𝐺) → 𝐻 ∈ Mgm)
3534adantr 480 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Mgm)
361, 16issubmgm2 18686 . . . 4 (𝐻 ∈ Mgm → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (𝐻s 𝐴) ∈ Mgm)))
3735, 36syl 17 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (𝐻s 𝐴) ∈ Mgm)))
3829, 33, 37mpbir2and 713 . 2 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubMgm‘𝐻))
3926, 38impbida 800 1 (𝑆 ∈ (SubMgm‘𝐺) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  Mgmcmgm 18621  SubMgmcsubmgm 18674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mgm 18623  df-submgm 18676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator