MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubmgm Structured version   Visualization version   GIF version

Theorem subsubmgm 18584
Description: A submagma of a submagma is a submagma. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
subsubmgm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubmgm (𝑆 ∈ (SubMgm‘𝐺) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubmgm
StepHypRef Expression
1 eqid 2729 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
21submgmss 18579 . . . . . . 7 (𝐴 ∈ (SubMgm‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
32adantl 481 . . . . . 6 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
4 subsubmgm.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
54submgmbas 18583 . . . . . . 7 (𝑆 ∈ (SubMgm‘𝐺) → 𝑆 = (Base‘𝐻))
65adantr 480 . . . . . 6 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝑆 = (Base‘𝐻))
73, 6sseqtrrd 3973 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴𝑆)
8 eqid 2729 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
98submgmss 18579 . . . . . 6 (𝑆 ∈ (SubMgm‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
109adantr 480 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
117, 10sstrd 3946 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
124oveq1i 7359 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
13 ressabs 17159 . . . . . . 7 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
1412, 13eqtrid 2776 . . . . . 6 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
157, 14syldan 591 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
16 eqid 2729 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
1716submgmmgm 18582 . . . . . 6 (𝐴 ∈ (SubMgm‘𝐻) → (𝐻s 𝐴) ∈ Mgm)
1817adantl 481 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐻s 𝐴) ∈ Mgm)
1915, 18eqeltrrd 2829 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐺s 𝐴) ∈ Mgm)
20 submgmrcl 18569 . . . . . 6 (𝑆 ∈ (SubMgm‘𝐺) → 𝐺 ∈ Mgm)
2120adantr 480 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐺 ∈ Mgm)
22 eqid 2729 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
238, 22issubmgm2 18577 . . . . 5 (𝐺 ∈ Mgm → (𝐴 ∈ (SubMgm‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝐺s 𝐴) ∈ Mgm)))
2421, 23syl 17 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐴 ∈ (SubMgm‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝐺s 𝐴) ∈ Mgm)))
2511, 19, 24mpbir2and 713 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴 ∈ (SubMgm‘𝐺))
2625, 7jca 511 . 2 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆))
27 simprr 772 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
285adantr 480 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
2927, 28sseqtrd 3972 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3014adantrl 716 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
3122submgmmgm 18582 . . . . 5 (𝐴 ∈ (SubMgm‘𝐺) → (𝐺s 𝐴) ∈ Mgm)
3231ad2antrl 728 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Mgm)
3330, 32eqeltrd 2828 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Mgm)
344submgmmgm 18582 . . . . 5 (𝑆 ∈ (SubMgm‘𝐺) → 𝐻 ∈ Mgm)
3534adantr 480 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Mgm)
361, 16issubmgm2 18577 . . . 4 (𝐻 ∈ Mgm → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (𝐻s 𝐴) ∈ Mgm)))
3735, 36syl 17 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (𝐻s 𝐴) ∈ Mgm)))
3829, 33, 37mpbir2and 713 . 2 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubMgm‘𝐻))
3926, 38impbida 800 1 (𝑆 ∈ (SubMgm‘𝐺) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3903  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  Mgmcmgm 18512  SubMgmcsubmgm 18565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mgm 18514  df-submgm 18567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator