Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsubmgm Structured version   Visualization version   GIF version

Theorem subsubmgm 44777
Description: A submagma of a submagma is a submagma. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
subsubmgm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubmgm (𝑆 ∈ (SubMgm‘𝐺) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubmgm
StepHypRef Expression
1 eqid 2759 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
21submgmss 44772 . . . . . . 7 (𝐴 ∈ (SubMgm‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
32adantl 486 . . . . . 6 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
4 subsubmgm.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
54submgmbas 44776 . . . . . . 7 (𝑆 ∈ (SubMgm‘𝐺) → 𝑆 = (Base‘𝐻))
65adantr 485 . . . . . 6 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝑆 = (Base‘𝐻))
73, 6sseqtrrd 3934 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴𝑆)
8 eqid 2759 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
98submgmss 44772 . . . . . 6 (𝑆 ∈ (SubMgm‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
109adantr 485 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
117, 10sstrd 3903 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
124oveq1i 7161 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
13 ressabs 16614 . . . . . . 7 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
1412, 13syl5eq 2806 . . . . . 6 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
157, 14syldan 595 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
16 eqid 2759 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
1716submgmmgm 44775 . . . . . 6 (𝐴 ∈ (SubMgm‘𝐻) → (𝐻s 𝐴) ∈ Mgm)
1817adantl 486 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐻s 𝐴) ∈ Mgm)
1915, 18eqeltrrd 2854 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐺s 𝐴) ∈ Mgm)
20 submgmrcl 44762 . . . . . 6 (𝑆 ∈ (SubMgm‘𝐺) → 𝐺 ∈ Mgm)
2120adantr 485 . . . . 5 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐺 ∈ Mgm)
22 eqid 2759 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
238, 22issubmgm2 44770 . . . . 5 (𝐺 ∈ Mgm → (𝐴 ∈ (SubMgm‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝐺s 𝐴) ∈ Mgm)))
2421, 23syl 17 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐴 ∈ (SubMgm‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝐺s 𝐴) ∈ Mgm)))
2511, 19, 24mpbir2and 713 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → 𝐴 ∈ (SubMgm‘𝐺))
2625, 7jca 516 . 2 ((𝑆 ∈ (SubMgm‘𝐺) ∧ 𝐴 ∈ (SubMgm‘𝐻)) → (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆))
27 simprr 773 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
285adantr 485 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
2927, 28sseqtrd 3933 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3014adantrl 716 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
3122submgmmgm 44775 . . . . 5 (𝐴 ∈ (SubMgm‘𝐺) → (𝐺s 𝐴) ∈ Mgm)
3231ad2antrl 728 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Mgm)
3330, 32eqeltrd 2853 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Mgm)
344submgmmgm 44775 . . . . 5 (𝑆 ∈ (SubMgm‘𝐺) → 𝐻 ∈ Mgm)
3534adantr 485 . . . 4 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Mgm)
361, 16issubmgm2 44770 . . . 4 (𝐻 ∈ Mgm → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (𝐻s 𝐴) ∈ Mgm)))
3735, 36syl 17 . . 3 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (𝐻s 𝐴) ∈ Mgm)))
3829, 33, 37mpbir2and 713 . 2 ((𝑆 ∈ (SubMgm‘𝐺) ∧ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubMgm‘𝐻))
3926, 38impbida 801 1 (𝑆 ∈ (SubMgm‘𝐺) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wss 3859  cfv 6336  (class class class)co 7151  Basecbs 16534  s cress 16535  Mgmcmgm 17909  SubMgmcsubmgm 44758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mgm 17911  df-submgm 44760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator