![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subsval | Structured version Visualization version GIF version |
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
subsval | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7431 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 +s ( -us ‘𝑦)) = (𝐴 +s ( -us ‘𝑦))) | |
2 | fveq2 6900 | . . 3 ⊢ (𝑦 = 𝐵 → ( -us ‘𝑦) = ( -us ‘𝐵)) | |
3 | 2 | oveq2d 7440 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 +s ( -us ‘𝑦)) = (𝐴 +s ( -us ‘𝐵))) |
4 | df-subs 27953 | . 2 ⊢ -s = (𝑥 ∈ No , 𝑦 ∈ No ↦ (𝑥 +s ( -us ‘𝑦))) | |
5 | ovex 7457 | . 2 ⊢ (𝐴 +s ( -us ‘𝐵)) ∈ V | |
6 | 1, 3, 4, 5 | ovmpo 7585 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6551 (class class class)co 7424 No csur 27591 +s cadds 27894 -us cnegs 27950 -s csubs 27951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-iota 6503 df-fun 6553 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-subs 27953 |
This theorem is referenced by: subsvald 27989 subscl 27990 negsval2 27992 subsid1 27994 subsid 27995 subadds 27996 sltsub1 28002 |
Copyright terms: Public domain | W3C validator |