MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsval Structured version   Visualization version   GIF version

Theorem subsval 27964
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
subsval ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))

Proof of Theorem subsval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . 2 (𝑥 = 𝐴 → (𝑥 +s ( -us𝑦)) = (𝐴 +s ( -us𝑦)))
2 fveq2 6858 . . 3 (𝑦 = 𝐵 → ( -us𝑦) = ( -us𝐵))
32oveq2d 7403 . 2 (𝑦 = 𝐵 → (𝐴 +s ( -us𝑦)) = (𝐴 +s ( -us𝐵)))
4 df-subs 27928 . 2 -s = (𝑥 No , 𝑦 No ↦ (𝑥 +s ( -us𝑦)))
5 ovex 7420 . 2 (𝐴 +s ( -us𝐵)) ∈ V
61, 3, 4, 5ovmpo 7549 1 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387   No csur 27551   +s cadds 27866   -us cnegs 27925   -s csubs 27926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-subs 27928
This theorem is referenced by:  subsvald  27965  subscl  27966  subsfo  27969  negsval2  27970  subsid1  27972  subsid  27973  subadds  27974  sltsub1  27980
  Copyright terms: Public domain W3C validator