![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subsval | Structured version Visualization version GIF version |
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
subsval | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7416 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 +s ( -us ‘𝑦)) = (𝐴 +s ( -us ‘𝑦))) | |
2 | fveq2 6892 | . . 3 ⊢ (𝑦 = 𝐵 → ( -us ‘𝑦) = ( -us ‘𝐵)) | |
3 | 2 | oveq2d 7425 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 +s ( -us ‘𝑦)) = (𝐴 +s ( -us ‘𝐵))) |
4 | df-subs 27497 | . 2 ⊢ -s = (𝑥 ∈ No , 𝑦 ∈ No ↦ (𝑥 +s ( -us ‘𝑦))) | |
5 | ovex 7442 | . 2 ⊢ (𝐴 +s ( -us ‘𝐵)) ∈ V | |
6 | 1, 3, 4, 5 | ovmpo 7568 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 No csur 27143 +s cadds 27443 -us cnegs 27494 -s csubs 27495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-subs 27497 |
This theorem is referenced by: subsvald 27533 subscl 27534 subsid1 27536 subsid 27537 subadds 27538 sltsub1 27543 |
Copyright terms: Public domain | W3C validator |