MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsval Structured version   Visualization version   GIF version

Theorem subsval 28001
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
subsval ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))

Proof of Theorem subsval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7359 . 2 (𝑥 = 𝐴 → (𝑥 +s ( -us𝑦)) = (𝐴 +s ( -us𝑦)))
2 fveq2 6828 . . 3 (𝑦 = 𝐵 → ( -us𝑦) = ( -us𝐵))
32oveq2d 7368 . 2 (𝑦 = 𝐵 → (𝐴 +s ( -us𝑦)) = (𝐴 +s ( -us𝐵)))
4 df-subs 27965 . 2 -s = (𝑥 No , 𝑦 No ↦ (𝑥 +s ( -us𝑦)))
5 ovex 7385 . 2 (𝐴 +s ( -us𝐵)) ∈ V
61, 3, 4, 5ovmpo 7512 1 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352   No csur 27579   +s cadds 27903   -us cnegs 27962   -s csubs 27963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-subs 27965
This theorem is referenced by:  subsvald  28002  subscl  28003  subsfo  28006  negsval2  28007  subsid1  28009  subsid  28010  subadds  28011  sltsub1  28017  zs12subscl  28390
  Copyright terms: Public domain W3C validator