| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subsval | Structured version Visualization version GIF version | ||
| Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.) |
| Ref | Expression |
|---|---|
| subsval | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7394 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 +s ( -us ‘𝑦)) = (𝐴 +s ( -us ‘𝑦))) | |
| 2 | fveq2 6858 | . . 3 ⊢ (𝑦 = 𝐵 → ( -us ‘𝑦) = ( -us ‘𝐵)) | |
| 3 | 2 | oveq2d 7403 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 +s ( -us ‘𝑦)) = (𝐴 +s ( -us ‘𝐵))) |
| 4 | df-subs 27928 | . 2 ⊢ -s = (𝑥 ∈ No , 𝑦 ∈ No ↦ (𝑥 +s ( -us ‘𝑦))) | |
| 5 | ovex 7420 | . 2 ⊢ (𝐴 +s ( -us ‘𝐵)) ∈ V | |
| 6 | 1, 3, 4, 5 | ovmpo 7549 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 No csur 27551 +s cadds 27866 -us cnegs 27925 -s csubs 27926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-subs 27928 |
| This theorem is referenced by: subsvald 27965 subscl 27966 subsfo 27969 negsval2 27970 subsid1 27972 subsid 27973 subadds 27974 sltsub1 27980 |
| Copyright terms: Public domain | W3C validator |