MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsval Structured version   Visualization version   GIF version

Theorem subsval 27998
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
subsval ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))

Proof of Theorem subsval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . 2 (𝑥 = 𝐴 → (𝑥 +s ( -us𝑦)) = (𝐴 +s ( -us𝑦)))
2 fveq2 6822 . . 3 (𝑦 = 𝐵 → ( -us𝑦) = ( -us𝐵))
32oveq2d 7362 . 2 (𝑦 = 𝐵 → (𝐴 +s ( -us𝑦)) = (𝐴 +s ( -us𝐵)))
4 df-subs 27962 . 2 -s = (𝑥 No , 𝑦 No ↦ (𝑥 +s ( -us𝑦)))
5 ovex 7379 . 2 (𝐴 +s ( -us𝐵)) ∈ V
61, 3, 4, 5ovmpo 7506 1 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346   No csur 27576   +s cadds 27900   -us cnegs 27959   -s csubs 27960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-subs 27962
This theorem is referenced by:  subsvald  27999  subscl  28000  subsfo  28003  negsval2  28004  subsid1  28006  subsid  28007  subadds  28008  sltsub1  28014  zs12subscl  28387
  Copyright terms: Public domain W3C validator