![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subsval | Structured version Visualization version GIF version |
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
subsval | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7438 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 +s ( -us ‘𝑦)) = (𝐴 +s ( -us ‘𝑦))) | |
2 | fveq2 6907 | . . 3 ⊢ (𝑦 = 𝐵 → ( -us ‘𝑦) = ( -us ‘𝐵)) | |
3 | 2 | oveq2d 7447 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 +s ( -us ‘𝑦)) = (𝐴 +s ( -us ‘𝐵))) |
4 | df-subs 28069 | . 2 ⊢ -s = (𝑥 ∈ No , 𝑦 ∈ No ↦ (𝑥 +s ( -us ‘𝑦))) | |
5 | ovex 7464 | . 2 ⊢ (𝐴 +s ( -us ‘𝐵)) ∈ V | |
6 | 1, 3, 4, 5 | ovmpo 7593 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 No csur 27699 +s cadds 28007 -us cnegs 28066 -s csubs 28067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-subs 28069 |
This theorem is referenced by: subsvald 28106 subscl 28107 subsfo 28110 negsval2 28111 subsid1 28113 subsid 28114 subadds 28115 sltsub1 28121 |
Copyright terms: Public domain | W3C validator |