| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltsub1 | Structured version Visualization version GIF version | ||
| Description: Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| sltsub1 | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴 -s 𝐶) <s (𝐵 -s 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negscl 27971 | . . 3 ⊢ (𝐶 ∈ No → ( -us ‘𝐶) ∈ No ) | |
| 2 | sltadd1 27928 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( -us ‘𝐶) ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴 +s ( -us ‘𝐶)) <s (𝐵 +s ( -us ‘𝐶)))) | |
| 3 | 1, 2 | syl3an3 1165 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴 +s ( -us ‘𝐶)) <s (𝐵 +s ( -us ‘𝐶)))) |
| 4 | subsval 27993 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 -s 𝐶) = (𝐴 +s ( -us ‘𝐶))) | |
| 5 | 4 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 -s 𝐶) = (𝐴 +s ( -us ‘𝐶))) |
| 6 | subsval 27993 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 -s 𝐶) = (𝐵 +s ( -us ‘𝐶))) | |
| 7 | 6 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 -s 𝐶) = (𝐵 +s ( -us ‘𝐶))) |
| 8 | 5, 7 | breq12d 5102 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐶) ↔ (𝐴 +s ( -us ‘𝐶)) <s (𝐵 +s ( -us ‘𝐶)))) |
| 9 | 3, 8 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴 -s 𝐶) <s (𝐵 -s 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 No csur 27571 <s cslt 27572 +s cadds 27895 -us cnegs 27954 -s csubs 27955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-1o 8380 df-2o 8381 df-nadd 8576 df-no 27574 df-slt 27575 df-bday 27576 df-sle 27677 df-sslt 27714 df-scut 27716 df-0s 27761 df-made 27781 df-old 27782 df-left 27784 df-right 27785 df-norec 27874 df-norec2 27885 df-adds 27896 df-negs 27956 df-subs 27957 |
| This theorem is referenced by: sltsub1d 28011 |
| Copyright terms: Public domain | W3C validator |