| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subadds | Structured version Visualization version GIF version | ||
| Description: Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 3-Feb-2025.) |
| Ref | Expression |
|---|---|
| subadds | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsval 28001 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) | |
| 2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
| 3 | 2 | eqeq1d 2733 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶)) |
| 4 | simpl 482 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) | |
| 5 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐶 ∈ No ) | |
| 6 | negscl 27979 | . . . . . . . 8 ⊢ (𝐵 ∈ No → ( -us ‘𝐵) ∈ No ) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
| 8 | 4, 5, 7 | adds32d 27951 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = ((𝐵 +s ( -us ‘𝐵)) +s 𝐶)) |
| 9 | negsid 27984 | . . . . . . . 8 ⊢ (𝐵 ∈ No → (𝐵 +s ( -us ‘𝐵)) = 0s ) | |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s ( -us ‘𝐵)) = 0s ) |
| 11 | 10 | oveq1d 7361 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s ( -us ‘𝐵)) +s 𝐶) = ( 0s +s 𝐶)) |
| 12 | addslid 27912 | . . . . . . 7 ⊢ (𝐶 ∈ No → ( 0s +s 𝐶) = 𝐶) | |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 0s +s 𝐶) = 𝐶) |
| 14 | 8, 11, 13 | 3eqtrd 2770 | . . . . 5 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = 𝐶) |
| 15 | 14 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = 𝐶) |
| 16 | 15 | eqeq1d 2733 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ 𝐶 = (𝐴 +s ( -us ‘𝐵)))) |
| 17 | eqcom 2738 | . . 3 ⊢ (𝐶 = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶) | |
| 18 | 16, 17 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶)) |
| 19 | addscl 27925 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s 𝐶) ∈ No ) | |
| 20 | 19 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s 𝐶) ∈ No ) |
| 21 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐴 ∈ No ) | |
| 22 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) | |
| 23 | 22 | negscld 27980 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
| 24 | 20, 21, 23 | addscan2d 27943 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐵 +s 𝐶) = 𝐴)) |
| 25 | 3, 18, 24 | 3bitr2d 307 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 No csur 27579 0s c0s 27767 +s cadds 27903 -us cnegs 27962 -s csubs 27963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27582 df-slt 27583 df-bday 27584 df-sle 27685 df-sslt 27722 df-scut 27724 df-0s 27769 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec 27882 df-norec2 27893 df-adds 27904 df-negs 27964 df-subs 27965 |
| This theorem is referenced by: subaddsd 28012 zseo 28346 |
| Copyright terms: Public domain | W3C validator |