| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subadds | Structured version Visualization version GIF version | ||
| Description: Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 3-Feb-2025.) |
| Ref | Expression |
|---|---|
| subadds | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsval 28003 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) | |
| 2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
| 3 | 2 | eqeq1d 2735 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶)) |
| 4 | simpl 482 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) | |
| 5 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐶 ∈ No ) | |
| 6 | negscl 27981 | . . . . . . . 8 ⊢ (𝐵 ∈ No → ( -us ‘𝐵) ∈ No ) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
| 8 | 4, 5, 7 | adds32d 27953 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = ((𝐵 +s ( -us ‘𝐵)) +s 𝐶)) |
| 9 | negsid 27986 | . . . . . . . 8 ⊢ (𝐵 ∈ No → (𝐵 +s ( -us ‘𝐵)) = 0s ) | |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s ( -us ‘𝐵)) = 0s ) |
| 11 | 10 | oveq1d 7369 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s ( -us ‘𝐵)) +s 𝐶) = ( 0s +s 𝐶)) |
| 12 | addslid 27914 | . . . . . . 7 ⊢ (𝐶 ∈ No → ( 0s +s 𝐶) = 𝐶) | |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 0s +s 𝐶) = 𝐶) |
| 14 | 8, 11, 13 | 3eqtrd 2772 | . . . . 5 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = 𝐶) |
| 15 | 14 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = 𝐶) |
| 16 | 15 | eqeq1d 2735 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ 𝐶 = (𝐴 +s ( -us ‘𝐵)))) |
| 17 | eqcom 2740 | . . 3 ⊢ (𝐶 = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶) | |
| 18 | 16, 17 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶)) |
| 19 | addscl 27927 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s 𝐶) ∈ No ) | |
| 20 | 19 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s 𝐶) ∈ No ) |
| 21 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐴 ∈ No ) | |
| 22 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) | |
| 23 | 22 | negscld 27982 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
| 24 | 20, 21, 23 | addscan2d 27945 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐵 +s 𝐶) = 𝐴)) |
| 25 | 3, 18, 24 | 3bitr2d 307 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 No csur 27581 0s c0s 27769 +s cadds 27905 -us cnegs 27964 -s csubs 27965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-1o 8393 df-2o 8394 df-nadd 8589 df-no 27584 df-slt 27585 df-bday 27586 df-sle 27687 df-sslt 27724 df-scut 27726 df-0s 27771 df-made 27791 df-old 27792 df-left 27794 df-right 27795 df-norec 27884 df-norec2 27895 df-adds 27906 df-negs 27966 df-subs 27967 |
| This theorem is referenced by: subaddsd 28014 zseo 28348 |
| Copyright terms: Public domain | W3C validator |