![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subadds | Structured version Visualization version GIF version |
Description: Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
subadds | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsval 27920 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) | |
2 | 1 | 3adant3 1129 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
3 | 2 | eqeq1d 2728 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶)) |
4 | simpl 482 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) | |
5 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐶 ∈ No ) | |
6 | negscl 27898 | . . . . . . . 8 ⊢ (𝐵 ∈ No → ( -us ‘𝐵) ∈ No ) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
8 | 4, 5, 7 | adds32d 27874 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = ((𝐵 +s ( -us ‘𝐵)) +s 𝐶)) |
9 | negsid 27903 | . . . . . . . 8 ⊢ (𝐵 ∈ No → (𝐵 +s ( -us ‘𝐵)) = 0s ) | |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s ( -us ‘𝐵)) = 0s ) |
11 | 10 | oveq1d 7419 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s ( -us ‘𝐵)) +s 𝐶) = ( 0s +s 𝐶)) |
12 | addslid 27835 | . . . . . . 7 ⊢ (𝐶 ∈ No → ( 0s +s 𝐶) = 𝐶) | |
13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 0s +s 𝐶) = 𝐶) |
14 | 8, 11, 13 | 3eqtrd 2770 | . . . . 5 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = 𝐶) |
15 | 14 | 3adant1 1127 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = 𝐶) |
16 | 15 | eqeq1d 2728 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ 𝐶 = (𝐴 +s ( -us ‘𝐵)))) |
17 | eqcom 2733 | . . 3 ⊢ (𝐶 = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶) | |
18 | 16, 17 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶)) |
19 | addscl 27848 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s 𝐶) ∈ No ) | |
20 | 19 | 3adant1 1127 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s 𝐶) ∈ No ) |
21 | simp1 1133 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐴 ∈ No ) | |
22 | simp2 1134 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) | |
23 | 22 | negscld 27899 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
24 | 20, 21, 23 | addscan2d 27866 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐵 +s 𝐶) = 𝐴)) |
25 | 3, 18, 24 | 3bitr2d 307 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6536 (class class class)co 7404 No csur 27523 0s c0s 27705 +s cadds 27826 -us cnegs 27882 -s csubs 27883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-1o 8464 df-2o 8465 df-nadd 8664 df-no 27526 df-slt 27527 df-bday 27528 df-sle 27628 df-sslt 27664 df-scut 27666 df-0s 27707 df-made 27724 df-old 27725 df-left 27727 df-right 27728 df-norec 27805 df-norec2 27816 df-adds 27827 df-negs 27884 df-subs 27885 |
This theorem is referenced by: subaddsd 27929 |
Copyright terms: Public domain | W3C validator |