![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subadds | Structured version Visualization version GIF version |
Description: Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
subadds | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsval 28108 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) | |
2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
3 | 2 | eqeq1d 2742 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶)) |
4 | simpl 482 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) | |
5 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐶 ∈ No ) | |
6 | negscl 28086 | . . . . . . . 8 ⊢ (𝐵 ∈ No → ( -us ‘𝐵) ∈ No ) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
8 | 4, 5, 7 | adds32d 28058 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = ((𝐵 +s ( -us ‘𝐵)) +s 𝐶)) |
9 | negsid 28091 | . . . . . . . 8 ⊢ (𝐵 ∈ No → (𝐵 +s ( -us ‘𝐵)) = 0s ) | |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s ( -us ‘𝐵)) = 0s ) |
11 | 10 | oveq1d 7463 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s ( -us ‘𝐵)) +s 𝐶) = ( 0s +s 𝐶)) |
12 | addslid 28019 | . . . . . . 7 ⊢ (𝐶 ∈ No → ( 0s +s 𝐶) = 𝐶) | |
13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 0s +s 𝐶) = 𝐶) |
14 | 8, 11, 13 | 3eqtrd 2784 | . . . . 5 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = 𝐶) |
15 | 14 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = 𝐶) |
16 | 15 | eqeq1d 2742 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ 𝐶 = (𝐴 +s ( -us ‘𝐵)))) |
17 | eqcom 2747 | . . 3 ⊢ (𝐶 = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶) | |
18 | 16, 17 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐴 +s ( -us ‘𝐵)) = 𝐶)) |
19 | addscl 28032 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s 𝐶) ∈ No ) | |
20 | 19 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s 𝐶) ∈ No ) |
21 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐴 ∈ No ) | |
22 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) | |
23 | 22 | negscld 28087 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
24 | 20, 21, 23 | addscan2d 28050 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (((𝐵 +s 𝐶) +s ( -us ‘𝐵)) = (𝐴 +s ( -us ‘𝐵)) ↔ (𝐵 +s 𝐶) = 𝐴)) |
25 | 3, 18, 24 | 3bitr2d 307 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 No csur 27702 0s c0s 27885 +s cadds 28010 -us cnegs 28069 -s csubs 28070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec 27989 df-norec2 28000 df-adds 28011 df-negs 28071 df-subs 28072 |
This theorem is referenced by: subaddsd 28119 zseo 28424 |
Copyright terms: Public domain | W3C validator |