MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subadds Structured version   Visualization version   GIF version

Theorem subadds 28115
Description: Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
subadds ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴))

Proof of Theorem subadds
StepHypRef Expression
1 subsval 28105 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
213adant3 1131 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
32eqeq1d 2737 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐴 +s ( -us𝐵)) = 𝐶))
4 simpl 482 . . . . . . 7 ((𝐵 No 𝐶 No ) → 𝐵 No )
5 simpr 484 . . . . . . 7 ((𝐵 No 𝐶 No ) → 𝐶 No )
6 negscl 28083 . . . . . . . 8 (𝐵 No → ( -us𝐵) ∈ No )
76adantr 480 . . . . . . 7 ((𝐵 No 𝐶 No ) → ( -us𝐵) ∈ No )
84, 5, 7adds32d 28055 . . . . . 6 ((𝐵 No 𝐶 No ) → ((𝐵 +s 𝐶) +s ( -us𝐵)) = ((𝐵 +s ( -us𝐵)) +s 𝐶))
9 negsid 28088 . . . . . . . 8 (𝐵 No → (𝐵 +s ( -us𝐵)) = 0s )
109adantr 480 . . . . . . 7 ((𝐵 No 𝐶 No ) → (𝐵 +s ( -us𝐵)) = 0s )
1110oveq1d 7446 . . . . . 6 ((𝐵 No 𝐶 No ) → ((𝐵 +s ( -us𝐵)) +s 𝐶) = ( 0s +s 𝐶))
12 addslid 28016 . . . . . . 7 (𝐶 No → ( 0s +s 𝐶) = 𝐶)
1312adantl 481 . . . . . 6 ((𝐵 No 𝐶 No ) → ( 0s +s 𝐶) = 𝐶)
148, 11, 133eqtrd 2779 . . . . 5 ((𝐵 No 𝐶 No ) → ((𝐵 +s 𝐶) +s ( -us𝐵)) = 𝐶)
15143adant1 1129 . . . 4 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐵 +s 𝐶) +s ( -us𝐵)) = 𝐶)
1615eqeq1d 2737 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (((𝐵 +s 𝐶) +s ( -us𝐵)) = (𝐴 +s ( -us𝐵)) ↔ 𝐶 = (𝐴 +s ( -us𝐵))))
17 eqcom 2742 . . 3 (𝐶 = (𝐴 +s ( -us𝐵)) ↔ (𝐴 +s ( -us𝐵)) = 𝐶)
1816, 17bitrdi 287 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (((𝐵 +s 𝐶) +s ( -us𝐵)) = (𝐴 +s ( -us𝐵)) ↔ (𝐴 +s ( -us𝐵)) = 𝐶))
19 addscl 28029 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 +s 𝐶) ∈ No )
20193adant1 1129 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐵 +s 𝐶) ∈ No )
21 simp1 1135 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → 𝐴 No )
22 simp2 1136 . . . 4 ((𝐴 No 𝐵 No 𝐶 No ) → 𝐵 No )
2322negscld 28084 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → ( -us𝐵) ∈ No )
2420, 21, 23addscan2d 28047 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (((𝐵 +s 𝐶) +s ( -us𝐵)) = (𝐴 +s ( -us𝐵)) ↔ (𝐵 +s 𝐶) = 𝐴))
253, 18, 243bitr2d 307 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431   No csur 27699   0s c0s 27882   +s cadds 28007   -us cnegs 28066   -s csubs 28067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069
This theorem is referenced by:  subaddsd  28116  zseo  28421
  Copyright terms: Public domain W3C validator