MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subadds Structured version   Visualization version   GIF version

Theorem subadds 27928
Description: Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
subadds ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴))

Proof of Theorem subadds
StepHypRef Expression
1 subsval 27920 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
213adant3 1129 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
32eqeq1d 2728 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐴 +s ( -us𝐵)) = 𝐶))
4 simpl 482 . . . . . . 7 ((𝐵 No 𝐶 No ) → 𝐵 No )
5 simpr 484 . . . . . . 7 ((𝐵 No 𝐶 No ) → 𝐶 No )
6 negscl 27898 . . . . . . . 8 (𝐵 No → ( -us𝐵) ∈ No )
76adantr 480 . . . . . . 7 ((𝐵 No 𝐶 No ) → ( -us𝐵) ∈ No )
84, 5, 7adds32d 27874 . . . . . 6 ((𝐵 No 𝐶 No ) → ((𝐵 +s 𝐶) +s ( -us𝐵)) = ((𝐵 +s ( -us𝐵)) +s 𝐶))
9 negsid 27903 . . . . . . . 8 (𝐵 No → (𝐵 +s ( -us𝐵)) = 0s )
109adantr 480 . . . . . . 7 ((𝐵 No 𝐶 No ) → (𝐵 +s ( -us𝐵)) = 0s )
1110oveq1d 7419 . . . . . 6 ((𝐵 No 𝐶 No ) → ((𝐵 +s ( -us𝐵)) +s 𝐶) = ( 0s +s 𝐶))
12 addslid 27835 . . . . . . 7 (𝐶 No → ( 0s +s 𝐶) = 𝐶)
1312adantl 481 . . . . . 6 ((𝐵 No 𝐶 No ) → ( 0s +s 𝐶) = 𝐶)
148, 11, 133eqtrd 2770 . . . . 5 ((𝐵 No 𝐶 No ) → ((𝐵 +s 𝐶) +s ( -us𝐵)) = 𝐶)
15143adant1 1127 . . . 4 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐵 +s 𝐶) +s ( -us𝐵)) = 𝐶)
1615eqeq1d 2728 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (((𝐵 +s 𝐶) +s ( -us𝐵)) = (𝐴 +s ( -us𝐵)) ↔ 𝐶 = (𝐴 +s ( -us𝐵))))
17 eqcom 2733 . . 3 (𝐶 = (𝐴 +s ( -us𝐵)) ↔ (𝐴 +s ( -us𝐵)) = 𝐶)
1816, 17bitrdi 287 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (((𝐵 +s 𝐶) +s ( -us𝐵)) = (𝐴 +s ( -us𝐵)) ↔ (𝐴 +s ( -us𝐵)) = 𝐶))
19 addscl 27848 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 +s 𝐶) ∈ No )
20193adant1 1127 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐵 +s 𝐶) ∈ No )
21 simp1 1133 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → 𝐴 No )
22 simp2 1134 . . . 4 ((𝐴 No 𝐵 No 𝐶 No ) → 𝐵 No )
2322negscld 27899 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → ( -us𝐵) ∈ No )
2420, 21, 23addscan2d 27866 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (((𝐵 +s 𝐶) +s ( -us𝐵)) = (𝐴 +s ( -us𝐵)) ↔ (𝐵 +s 𝐶) = 𝐴))
253, 18, 243bitr2d 307 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  cfv 6536  (class class class)co 7404   No csur 27523   0s c0s 27705   +s cadds 27826   -us cnegs 27882   -s csubs 27883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-1o 8464  df-2o 8465  df-nadd 8664  df-no 27526  df-slt 27527  df-bday 27528  df-sle 27628  df-sslt 27664  df-scut 27666  df-0s 27707  df-made 27724  df-old 27725  df-left 27727  df-right 27728  df-norec 27805  df-norec2 27816  df-adds 27827  df-negs 27884  df-subs 27885
This theorem is referenced by:  subaddsd  27929
  Copyright terms: Public domain W3C validator