MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subadds Structured version   Visualization version   GIF version

Theorem subadds 27527
Description: Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
subadds ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴))

Proof of Theorem subadds
StepHypRef Expression
1 subsval 27521 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
213adant3 1132 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
32eqeq1d 2734 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐴 +s ( -us𝐵)) = 𝐶))
4 simpl 483 . . . . . . 7 ((𝐵 No 𝐶 No ) → 𝐵 No )
5 simpr 485 . . . . . . 7 ((𝐵 No 𝐶 No ) → 𝐶 No )
6 negscl 27499 . . . . . . . 8 (𝐵 No → ( -us𝐵) ∈ No )
76adantr 481 . . . . . . 7 ((𝐵 No 𝐶 No ) → ( -us𝐵) ∈ No )
84, 5, 7adds32d 27479 . . . . . 6 ((𝐵 No 𝐶 No ) → ((𝐵 +s 𝐶) +s ( -us𝐵)) = ((𝐵 +s ( -us𝐵)) +s 𝐶))
9 negsid 27504 . . . . . . . 8 (𝐵 No → (𝐵 +s ( -us𝐵)) = 0s )
109adantr 481 . . . . . . 7 ((𝐵 No 𝐶 No ) → (𝐵 +s ( -us𝐵)) = 0s )
1110oveq1d 7420 . . . . . 6 ((𝐵 No 𝐶 No ) → ((𝐵 +s ( -us𝐵)) +s 𝐶) = ( 0s +s 𝐶))
12 addslid 27441 . . . . . . 7 (𝐶 No → ( 0s +s 𝐶) = 𝐶)
1312adantl 482 . . . . . 6 ((𝐵 No 𝐶 No ) → ( 0s +s 𝐶) = 𝐶)
148, 11, 133eqtrd 2776 . . . . 5 ((𝐵 No 𝐶 No ) → ((𝐵 +s 𝐶) +s ( -us𝐵)) = 𝐶)
15143adant1 1130 . . . 4 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐵 +s 𝐶) +s ( -us𝐵)) = 𝐶)
1615eqeq1d 2734 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (((𝐵 +s 𝐶) +s ( -us𝐵)) = (𝐴 +s ( -us𝐵)) ↔ 𝐶 = (𝐴 +s ( -us𝐵))))
17 eqcom 2739 . . 3 (𝐶 = (𝐴 +s ( -us𝐵)) ↔ (𝐴 +s ( -us𝐵)) = 𝐶)
1816, 17bitrdi 286 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (((𝐵 +s 𝐶) +s ( -us𝐵)) = (𝐴 +s ( -us𝐵)) ↔ (𝐴 +s ( -us𝐵)) = 𝐶))
19 addscl 27454 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 +s 𝐶) ∈ No )
20193adant1 1130 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐵 +s 𝐶) ∈ No )
21 simp1 1136 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → 𝐴 No )
22 simp2 1137 . . . 4 ((𝐴 No 𝐵 No 𝐶 No ) → 𝐵 No )
2322negscld 27500 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → ( -us𝐵) ∈ No )
2420, 21, 23addscan2d 27471 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (((𝐵 +s 𝐶) +s ( -us𝐵)) = (𝐴 +s ( -us𝐵)) ↔ (𝐵 +s 𝐶) = 𝐴))
253, 18, 243bitr2d 306 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6540  (class class class)co 7405   No csur 27132   0s c0s 27312   +s cadds 27432   -us cnegs 27483   -s csubs 27484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-1o 8462  df-2o 8463  df-nadd 8661  df-no 27135  df-slt 27136  df-bday 27137  df-sle 27237  df-sslt 27272  df-scut 27274  df-0s 27314  df-made 27331  df-old 27332  df-left 27334  df-right 27335  df-norec 27411  df-norec2 27422  df-adds 27433  df-negs 27485  df-subs 27486
This theorem is referenced by:  subaddsd  27528
  Copyright terms: Public domain W3C validator