![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subsvald | Structured version Visualization version GIF version |
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
Ref | Expression |
---|---|
subsvald.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
subsvald.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
Ref | Expression |
---|---|
subsvald | ⊢ (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsvald.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | subsvald.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
3 | subsval 28063 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) | |
4 | 1, 2, 3 | syl2anc 582 | 1 ⊢ (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6545 (class class class)co 7415 No csur 27665 +s cadds 27969 -us cnegs 28025 -s csubs 28026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3466 df-sbc 3778 df-dif 3951 df-un 3953 df-ss 3965 df-nul 4325 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6497 df-fun 6547 df-fv 6553 df-ov 7418 df-oprab 7419 df-mpo 7420 df-subs 28028 |
This theorem is referenced by: sltsub2 28080 negsubsdi2d 28083 addsubsassd 28084 addsubsd 28085 sltsubsubbd 28086 subsubs4d 28097 subsubs2d 28098 elzn0s 28338 recut 28343 renegscl 28345 |
Copyright terms: Public domain | W3C validator |