MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsvald Structured version   Visualization version   GIF version

Theorem subsvald 28064
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.)
Hypotheses
Ref Expression
subsvald.1 (𝜑𝐴 No )
subsvald.2 (𝜑𝐵 No )
Assertion
Ref Expression
subsvald (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))

Proof of Theorem subsvald
StepHypRef Expression
1 subsvald.1 . 2 (𝜑𝐴 No )
2 subsvald.2 . 2 (𝜑𝐵 No )
3 subsval 28063 . 2 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
41, 2, 3syl2anc 582 1 (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6545  (class class class)co 7415   No csur 27665   +s cadds 27969   -us cnegs 28025   -s csubs 28026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3421  df-v 3466  df-sbc 3778  df-dif 3951  df-un 3953  df-ss 3965  df-nul 4325  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-br 5146  df-opab 5208  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-iota 6497  df-fun 6547  df-fv 6553  df-ov 7418  df-oprab 7419  df-mpo 7420  df-subs 28028
This theorem is referenced by:  sltsub2  28080  negsubsdi2d  28083  addsubsassd  28084  addsubsd  28085  sltsubsubbd  28086  subsubs4d  28097  subsubs2d  28098  elzn0s  28338  recut  28343  renegscl  28345
  Copyright terms: Public domain W3C validator