MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsvald Structured version   Visualization version   GIF version

Theorem subsvald 28022
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.)
Hypotheses
Ref Expression
subsvald.1 (𝜑𝐴 No )
subsvald.2 (𝜑𝐵 No )
Assertion
Ref Expression
subsvald (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))

Proof of Theorem subsvald
StepHypRef Expression
1 subsvald.1 . 2 (𝜑𝐴 No )
2 subsvald.2 . 2 (𝜑𝐵 No )
3 subsval 28021 . 2 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410   No csur 27608   +s cadds 27923   -us cnegs 27982   -s csubs 27983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-subs 27985
This theorem is referenced by:  sltsub2  28038  negsubsdi2d  28041  addsubsassd  28042  addsubsd  28043  sltsubsubbd  28044  subsubs4d  28055  subsubs2d  28056  subscan1d  28063  subscan2d  28064  zsubscld  28341  elzn0s  28343  zscut  28352  zseo  28365  recut  28404  renegscl  28406
  Copyright terms: Public domain W3C validator