MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsvald Structured version   Visualization version   GIF version

Theorem subsvald 28106
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.)
Hypotheses
Ref Expression
subsvald.1 (𝜑𝐴 No )
subsvald.2 (𝜑𝐵 No )
Assertion
Ref Expression
subsvald (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))

Proof of Theorem subsvald
StepHypRef Expression
1 subsvald.1 . 2 (𝜑𝐴 No )
2 subsvald.2 . 2 (𝜑𝐵 No )
3 subsval 28105 . 2 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431   No csur 27699   +s cadds 28007   -us cnegs 28066   -s csubs 28067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-subs 28069
This theorem is referenced by:  sltsub2  28122  negsubsdi2d  28125  addsubsassd  28126  addsubsd  28127  sltsubsubbd  28128  subsubs4d  28139  subsubs2d  28140  zsubscld  28397  elzn0s  28399  zscut  28408  zseo  28421  recut  28443  renegscl  28445
  Copyright terms: Public domain W3C validator