MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsvald Structured version   Visualization version   GIF version

Theorem subsvald 27533
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.)
Hypotheses
Ref Expression
subsvald.1 (𝜑𝐴 No )
subsvald.2 (𝜑𝐵 No )
Assertion
Ref Expression
subsvald (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))

Proof of Theorem subsvald
StepHypRef Expression
1 subsvald.1 . 2 (𝜑𝐴 No )
2 subsvald.2 . 2 (𝜑𝐵 No )
3 subsval 27532 . 2 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
41, 2, 3syl2anc 585 1 (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cfv 6544  (class class class)co 7409   No csur 27143   +s cadds 27443   -us cnegs 27494   -s csubs 27495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-subs 27497
This theorem is referenced by:  sltsub2  27544  negsubsdi2d  27547  addsubsassd  27548  addsubsd  27549  sltsubsubbd  27550  subsubs4d  27560
  Copyright terms: Public domain W3C validator