| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subsvald | Structured version Visualization version GIF version | ||
| Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| subsvald.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| subsvald.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| subsvald | ⊢ (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsvald.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | subsvald.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | subsval 28001 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 No csur 27579 +s cadds 27903 -us cnegs 27962 -s csubs 27963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-subs 27965 |
| This theorem is referenced by: sltsub2 28018 negsubsdi2d 28021 addsubsassd 28022 addsubsd 28023 sltsubsubbd 28024 subsubs4d 28035 subsubs2d 28036 subscan1d 28043 subscan2d 28044 zsubscld 28321 elzn0s 28323 zscut 28332 zseo 28346 recut 28399 renegscl 28401 |
| Copyright terms: Public domain | W3C validator |