| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subsvald | Structured version Visualization version GIF version | ||
| Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| subsvald.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| subsvald.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| subsvald | ⊢ (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsvald.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | subsvald.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | subsval 28003 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 No csur 27581 +s cadds 27905 -us cnegs 27964 -s csubs 27965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-subs 27967 |
| This theorem is referenced by: sltsub2 28020 negsubsdi2d 28023 addsubsassd 28024 addsubsd 28025 sltsubsubbd 28026 subsubs4d 28037 subsubs2d 28038 subscan1d 28045 subscan2d 28046 zsubscld 28323 elzn0s 28325 zscut 28334 zseo 28348 recut 28401 renegscl 28403 |
| Copyright terms: Public domain | W3C validator |