![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjlej12 | Structured version Visualization version GIF version |
Description: Add join to both sides of a lattice ordering. (chlej12i 31507 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjlej12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑍 ≤ 𝑊) → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
2 | simp2l 1199 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
3 | simp2r 1200 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
4 | simp3l 1201 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
5 | latlej.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
6 | latlej.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
7 | latlej.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
8 | 5, 6, 7 | latjlej1 18523 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍))) |
9 | 1, 2, 3, 4, 8 | syl13anc 1372 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍))) |
10 | simp3r 1202 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑊 ∈ 𝐵) | |
11 | 5, 6, 7 | latjlej2 18524 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑍 ≤ 𝑊 → (𝑌 ∨ 𝑍) ≤ (𝑌 ∨ 𝑊))) |
12 | 1, 4, 10, 3, 11 | syl13anc 1372 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 ≤ 𝑊 → (𝑌 ∨ 𝑍) ≤ (𝑌 ∨ 𝑊))) |
13 | 5, 7 | latjcl 18509 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∨ 𝑍) ∈ 𝐵) |
14 | 1, 2, 4, 13 | syl3anc 1371 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 ∨ 𝑍) ∈ 𝐵) |
15 | 5, 7 | latjcl 18509 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∨ 𝑍) ∈ 𝐵) |
16 | 1, 3, 4, 15 | syl3anc 1371 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 ∨ 𝑍) ∈ 𝐵) |
17 | 5, 7 | latjcl 18509 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∨ 𝑊) ∈ 𝐵) |
18 | 1, 3, 10, 17 | syl3anc 1371 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 ∨ 𝑊) ∈ 𝐵) |
19 | 5, 6 | lattr 18514 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∨ 𝑍) ∈ 𝐵 ∧ (𝑌 ∨ 𝑍) ∈ 𝐵 ∧ (𝑌 ∨ 𝑊) ∈ 𝐵)) → (((𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍) ∧ (𝑌 ∨ 𝑍) ≤ (𝑌 ∨ 𝑊)) → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑊))) |
20 | 1, 14, 16, 18, 19 | syl13anc 1372 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍) ∧ (𝑌 ∨ 𝑍) ≤ (𝑌 ∨ 𝑊)) → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑊))) |
21 | 9, 12, 20 | syl2and 607 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑍 ≤ 𝑊) → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 joincjn 18381 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-poset 18383 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-lat 18502 |
This theorem is referenced by: latledi 18547 dalem-cly 39628 dalem38 39667 dalem44 39673 cdlema1N 39748 pmapjoin 39809 4atexlemc 40026 cdlemg33a 40663 |
Copyright terms: Public domain | W3C validator |