MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjlej12 Structured version   Visualization version   GIF version

Theorem latjlej12 18446
Description: Add join to both sides of a lattice ordering. (chlej12i 31329 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latlej.b 𝐡 = (Baseβ€˜πΎ)
latlej.l ≀ = (leβ€˜πΎ)
latlej.j ∨ = (joinβ€˜πΎ)
Assertion
Ref Expression
latjlej12 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑍 ≀ π‘Š) β†’ (𝑋 ∨ 𝑍) ≀ (π‘Œ ∨ π‘Š)))

Proof of Theorem latjlej12
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝐾 ∈ Lat)
2 simp2l 1196 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
3 simp2r 1197 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
4 simp3l 1198 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝑍 ∈ 𝐡)
5 latlej.b . . . 4 𝐡 = (Baseβ€˜πΎ)
6 latlej.l . . . 4 ≀ = (leβ€˜πΎ)
7 latlej.j . . . 4 ∨ = (joinβ€˜πΎ)
85, 6, 7latjlej1 18444 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ π‘Œ β†’ (𝑋 ∨ 𝑍) ≀ (π‘Œ ∨ 𝑍)))
91, 2, 3, 4, 8syl13anc 1369 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (𝑋 ≀ π‘Œ β†’ (𝑋 ∨ 𝑍) ≀ (π‘Œ ∨ 𝑍)))
10 simp3r 1199 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ π‘Š ∈ 𝐡)
115, 6, 7latjlej2 18445 . . 3 ((𝐾 ∈ Lat ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑍 ≀ π‘Š β†’ (π‘Œ ∨ 𝑍) ≀ (π‘Œ ∨ π‘Š)))
121, 4, 10, 3, 11syl13anc 1369 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (𝑍 ≀ π‘Š β†’ (π‘Œ ∨ 𝑍) ≀ (π‘Œ ∨ π‘Š)))
135, 7latjcl 18430 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ (𝑋 ∨ 𝑍) ∈ 𝐡)
141, 2, 4, 13syl3anc 1368 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (𝑋 ∨ 𝑍) ∈ 𝐡)
155, 7latjcl 18430 . . . 4 ((𝐾 ∈ Lat ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ (π‘Œ ∨ 𝑍) ∈ 𝐡)
161, 3, 4, 15syl3anc 1368 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (π‘Œ ∨ 𝑍) ∈ 𝐡)
175, 7latjcl 18430 . . . 4 ((𝐾 ∈ Lat ∧ π‘Œ ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (π‘Œ ∨ π‘Š) ∈ 𝐡)
181, 3, 10, 17syl3anc 1368 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (π‘Œ ∨ π‘Š) ∈ 𝐡)
195, 6lattr 18435 . . 3 ((𝐾 ∈ Lat ∧ ((𝑋 ∨ 𝑍) ∈ 𝐡 ∧ (π‘Œ ∨ 𝑍) ∈ 𝐡 ∧ (π‘Œ ∨ π‘Š) ∈ 𝐡)) β†’ (((𝑋 ∨ 𝑍) ≀ (π‘Œ ∨ 𝑍) ∧ (π‘Œ ∨ 𝑍) ≀ (π‘Œ ∨ π‘Š)) β†’ (𝑋 ∨ 𝑍) ≀ (π‘Œ ∨ π‘Š)))
201, 14, 16, 18, 19syl13anc 1369 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (((𝑋 ∨ 𝑍) ≀ (π‘Œ ∨ 𝑍) ∧ (π‘Œ ∨ 𝑍) ≀ (π‘Œ ∨ π‘Š)) β†’ (𝑋 ∨ 𝑍) ≀ (π‘Œ ∨ π‘Š)))
219, 12, 20syl2and 606 1 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑍 ≀ π‘Š) β†’ (𝑋 ∨ 𝑍) ≀ (π‘Œ ∨ π‘Š)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5143  β€˜cfv 6543  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302  Latclat 18422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-poset 18304  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-lat 18423
This theorem is referenced by:  latledi  18468  dalem-cly  39200  dalem38  39239  dalem44  39245  cdlema1N  39320  pmapjoin  39381  4atexlemc  39598  cdlemg33a  40235
  Copyright terms: Public domain W3C validator