MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjlej12 Structured version   Visualization version   GIF version

Theorem latjlej12 18421
Description: Add join to both sides of a lattice ordering. (chlej12i 31411 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latjlej12 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌𝑍 𝑊) → (𝑋 𝑍) (𝑌 𝑊)))

Proof of Theorem latjlej12
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐾 ∈ Lat)
2 simp2l 1200 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
3 simp2r 1201 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
4 simp3l 1202 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
5 latlej.b . . . 4 𝐵 = (Base‘𝐾)
6 latlej.l . . . 4 = (le‘𝐾)
7 latlej.j . . . 4 = (join‘𝐾)
85, 6, 7latjlej1 18419 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
91, 2, 3, 4, 8syl13anc 1374 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
10 simp3r 1203 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
115, 6, 7latjlej2 18420 . . 3 ((𝐾 ∈ Lat ∧ (𝑍𝐵𝑊𝐵𝑌𝐵)) → (𝑍 𝑊 → (𝑌 𝑍) (𝑌 𝑊)))
121, 4, 10, 3, 11syl13anc 1374 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 𝑊 → (𝑌 𝑍) (𝑌 𝑊)))
135, 7latjcl 18405 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
141, 2, 4, 13syl3anc 1373 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑍) ∈ 𝐵)
155, 7latjcl 18405 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
161, 3, 4, 15syl3anc 1373 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑍) ∈ 𝐵)
175, 7latjcl 18405 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
181, 3, 10, 17syl3anc 1373 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) ∈ 𝐵)
195, 6lattr 18410 . . 3 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵 ∧ (𝑌 𝑍) ∈ 𝐵 ∧ (𝑌 𝑊) ∈ 𝐵)) → (((𝑋 𝑍) (𝑌 𝑍) ∧ (𝑌 𝑍) (𝑌 𝑊)) → (𝑋 𝑍) (𝑌 𝑊)))
201, 14, 16, 18, 19syl13anc 1374 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (((𝑋 𝑍) (𝑌 𝑍) ∧ (𝑌 𝑍) (𝑌 𝑊)) → (𝑋 𝑍) (𝑌 𝑊)))
219, 12, 20syl2and 608 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌𝑍 𝑊) → (𝑋 𝑍) (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  Latclat 18397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-lat 18398
This theorem is referenced by:  latledi  18443  dalem-cly  39672  dalem38  39711  dalem44  39717  cdlema1N  39792  pmapjoin  39853  4atexlemc  40070  cdlemg33a  40707
  Copyright terms: Public domain W3C validator