MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjlej12 Structured version   Visualization version   GIF version

Theorem latjlej12 17420
Description: Add join to both sides of a lattice ordering. (chlej12i 28878 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latjlej12 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌𝑍 𝑊) → (𝑋 𝑍) (𝑌 𝑊)))

Proof of Theorem latjlej12
StepHypRef Expression
1 simp1 1170 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐾 ∈ Lat)
2 simp2l 1260 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
3 simp2r 1261 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
4 simp3l 1262 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
5 latlej.b . . . 4 𝐵 = (Base‘𝐾)
6 latlej.l . . . 4 = (le‘𝐾)
7 latlej.j . . . 4 = (join‘𝐾)
85, 6, 7latjlej1 17418 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
91, 2, 3, 4, 8syl13anc 1495 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
10 simp3r 1263 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
115, 6, 7latjlej2 17419 . . 3 ((𝐾 ∈ Lat ∧ (𝑍𝐵𝑊𝐵𝑌𝐵)) → (𝑍 𝑊 → (𝑌 𝑍) (𝑌 𝑊)))
121, 4, 10, 3, 11syl13anc 1495 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 𝑊 → (𝑌 𝑍) (𝑌 𝑊)))
135, 7latjcl 17404 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
141, 2, 4, 13syl3anc 1494 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑍) ∈ 𝐵)
155, 7latjcl 17404 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
161, 3, 4, 15syl3anc 1494 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑍) ∈ 𝐵)
175, 7latjcl 17404 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
181, 3, 10, 17syl3anc 1494 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) ∈ 𝐵)
195, 6lattr 17409 . . 3 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵 ∧ (𝑌 𝑍) ∈ 𝐵 ∧ (𝑌 𝑊) ∈ 𝐵)) → (((𝑋 𝑍) (𝑌 𝑍) ∧ (𝑌 𝑍) (𝑌 𝑊)) → (𝑋 𝑍) (𝑌 𝑊)))
201, 14, 16, 18, 19syl13anc 1495 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (((𝑋 𝑍) (𝑌 𝑍) ∧ (𝑌 𝑍) (𝑌 𝑊)) → (𝑋 𝑍) (𝑌 𝑊)))
219, 12, 20syl2and 601 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌𝑍 𝑊) → (𝑋 𝑍) (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164   class class class wbr 4873  cfv 6123  (class class class)co 6905  Basecbs 16222  lecple 16312  joincjn 17297  Latclat 17398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-poset 17299  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-lat 17399
This theorem is referenced by:  latledi  17442  dalem-cly  35739  dalem38  35778  dalem44  35784  cdlema1N  35859  pmapjoin  35920  4atexlemc  36137  cdlemg33a  36774
  Copyright terms: Public domain W3C validator