MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjlej12 Structured version   Visualization version   GIF version

Theorem latjlej12 18512
Description: Add join to both sides of a lattice ordering. (chlej12i 31503 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latjlej12 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌𝑍 𝑊) → (𝑋 𝑍) (𝑌 𝑊)))

Proof of Theorem latjlej12
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐾 ∈ Lat)
2 simp2l 1198 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
3 simp2r 1199 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
4 simp3l 1200 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
5 latlej.b . . . 4 𝐵 = (Base‘𝐾)
6 latlej.l . . . 4 = (le‘𝐾)
7 latlej.j . . . 4 = (join‘𝐾)
85, 6, 7latjlej1 18510 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
91, 2, 3, 4, 8syl13anc 1371 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
10 simp3r 1201 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
115, 6, 7latjlej2 18511 . . 3 ((𝐾 ∈ Lat ∧ (𝑍𝐵𝑊𝐵𝑌𝐵)) → (𝑍 𝑊 → (𝑌 𝑍) (𝑌 𝑊)))
121, 4, 10, 3, 11syl13anc 1371 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 𝑊 → (𝑌 𝑍) (𝑌 𝑊)))
135, 7latjcl 18496 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
141, 2, 4, 13syl3anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑍) ∈ 𝐵)
155, 7latjcl 18496 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
161, 3, 4, 15syl3anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑍) ∈ 𝐵)
175, 7latjcl 18496 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
181, 3, 10, 17syl3anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) ∈ 𝐵)
195, 6lattr 18501 . . 3 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵 ∧ (𝑌 𝑍) ∈ 𝐵 ∧ (𝑌 𝑊) ∈ 𝐵)) → (((𝑋 𝑍) (𝑌 𝑍) ∧ (𝑌 𝑍) (𝑌 𝑊)) → (𝑋 𝑍) (𝑌 𝑊)))
201, 14, 16, 18, 19syl13anc 1371 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (((𝑋 𝑍) (𝑌 𝑍) ∧ (𝑌 𝑍) (𝑌 𝑊)) → (𝑋 𝑍) (𝑌 𝑊)))
219, 12, 20syl2and 608 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌𝑍 𝑊) → (𝑋 𝑍) (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105   class class class wbr 5147  cfv 6562  (class class class)co 7430  Basecbs 17244  lecple 17304  joincjn 18368  Latclat 18488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-poset 18370  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-lat 18489
This theorem is referenced by:  latledi  18534  dalem-cly  39653  dalem38  39692  dalem44  39698  cdlema1N  39773  pmapjoin  39834  4atexlemc  40051  cdlemg33a  40688
  Copyright terms: Public domain W3C validator