![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xle2add | Structured version Visualization version GIF version |
Description: Extended real version of le2add 10921. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xle2add | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 755 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐴 ∈ ℝ*) | |
2 | simprl 759 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐶 ∈ ℝ*) | |
3 | simplr 757 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐵 ∈ ℝ*) | |
4 | xleadd1a 12460 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐶) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)) | |
5 | 4 | ex 405 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐶 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵))) |
6 | 1, 2, 3, 5 | syl3anc 1352 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐴 ≤ 𝐶 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵))) |
7 | simprr 761 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐷 ∈ ℝ*) | |
8 | xleadd2a 12461 | . . . 4 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐵 ≤ 𝐷) → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) | |
9 | 8 | ex 405 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ≤ 𝐷 → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
10 | 3, 7, 2, 9 | syl3anc 1352 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐵 ≤ 𝐷 → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
11 | xaddcl 12447 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
12 | 11 | adantr 473 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
13 | xaddcl 12447 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) ∈ ℝ*) | |
14 | 2, 3, 13 | syl2anc 576 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐶 +𝑒 𝐵) ∈ ℝ*) |
15 | xaddcl 12447 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → (𝐶 +𝑒 𝐷) ∈ ℝ*) | |
16 | 15 | adantl 474 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐶 +𝑒 𝐷) ∈ ℝ*) |
17 | xrletr 12366 | . . 3 ⊢ (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ (𝐶 +𝑒 𝐵) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ∈ ℝ*) → (((𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ∧ (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) | |
18 | 12, 14, 16, 17 | syl3anc 1352 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (((𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ∧ (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
19 | 6, 10, 18 | syl2and 599 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 ∈ wcel 2051 class class class wbr 4925 (class class class)co 6974 ℝ*cxr 10471 ≤ cle 10473 +𝑒 cxad 12320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-po 5322 df-so 5323 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-1st 7499 df-2nd 7500 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-xadd 12323 |
This theorem is referenced by: metnrmlem3 23187 xraddge02 30256 xrofsup 30268 esumpmono 31014 xadd0ge 41049 sge0split 42154 |
Copyright terms: Public domain | W3C validator |