MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xle2add Structured version   Visualization version   GIF version

Theorem xle2add 13094
Description: Extended real version of le2add 11558. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xle2add (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝐶𝐵𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)))

Proof of Theorem xle2add
StepHypRef Expression
1 simpll 764 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → 𝐴 ∈ ℝ*)
2 simprl 768 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → 𝐶 ∈ ℝ*)
3 simplr 766 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → 𝐵 ∈ ℝ*)
4 xleadd1a 13088 . . . 4 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐶) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵))
54ex 413 . . 3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐶 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
61, 2, 3, 5syl3anc 1370 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → (𝐴𝐶 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
7 simprr 770 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → 𝐷 ∈ ℝ*)
8 xleadd2a 13089 . . . 4 (((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐷) → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))
98ex 413 . . 3 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐷 → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)))
103, 7, 2, 9syl3anc 1370 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → (𝐵𝐷 → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)))
11 xaddcl 13074 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
1211adantr 481 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
13 xaddcl 13074 . . . 4 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) ∈ ℝ*)
142, 3, 13syl2anc 584 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → (𝐶 +𝑒 𝐵) ∈ ℝ*)
15 xaddcl 13074 . . . 4 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
1615adantl 482 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
17 xrletr 12993 . . 3 (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ (𝐶 +𝑒 𝐵) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ∈ ℝ*) → (((𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ∧ (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)))
1812, 14, 16, 17syl3anc 1370 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → (((𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ∧ (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)))
196, 10, 18syl2and 608 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝐶𝐵𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2105   class class class wbr 5092  (class class class)co 7337  *cxr 11109  cle 11111   +𝑒 cxad 12947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-po 5532  df-so 5533  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-xadd 12950
This theorem is referenced by:  metnrmlem3  24130  xraddge02  31366  xrofsup  31377  esumpmono  32345  xadd0ge  43203  sge0split  44293
  Copyright terms: Public domain W3C validator