| Step | Hyp | Ref
| Expression |
| 1 | | mpomulf 11250 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ ×
ℂ)⟶ℂ |
| 2 | | ffn 6736 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
→ (𝑥 ∈ ℂ,
𝑦 ∈ ℂ ↦
(𝑥 · 𝑦)) Fn (ℂ ×
ℂ)) |
| 3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ ×
ℂ) |
| 4 | | mpodvdsmulf1o.x |
. . . . . . . . 9
⊢ 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} |
| 5 | 4 | ssrab3 4082 |
. . . . . . . 8
⊢ 𝑋 ⊆
ℕ |
| 6 | | nnsscn 12271 |
. . . . . . . 8
⊢ ℕ
⊆ ℂ |
| 7 | 5, 6 | sstri 3993 |
. . . . . . 7
⊢ 𝑋 ⊆
ℂ |
| 8 | | mpodvdsmulf1o.y |
. . . . . . . . 9
⊢ 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
| 9 | 8 | ssrab3 4082 |
. . . . . . . 8
⊢ 𝑌 ⊆
ℕ |
| 10 | 9, 6 | sstri 3993 |
. . . . . . 7
⊢ 𝑌 ⊆
ℂ |
| 11 | | xpss12 5700 |
. . . . . . 7
⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ)) |
| 12 | 7, 10, 11 | mp2an 692 |
. . . . . 6
⊢ (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ) |
| 13 | | fnssres 6691 |
. . . . . 6
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) →
((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
| 14 | 3, 12, 13 | mp2an 692 |
. . . . 5
⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
| 15 | 14 | a1i 11 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
| 16 | | ovres 7599 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌) → (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
| 17 | 16 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
| 18 | 7 | sseli 3979 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑋 → 𝑖 ∈ ℂ) |
| 19 | 18 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌) → 𝑖 ∈ ℂ) |
| 20 | 10 | sseli 3979 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑌 → 𝑗 ∈ ℂ) |
| 21 | 20 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌) → 𝑗 ∈ ℂ) |
| 22 | | ovmpot 7594 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑖 · 𝑗)) |
| 23 | 22 | eqcomd 2743 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑖 · 𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
| 24 | 19, 21, 23 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌) → (𝑖 · 𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
| 25 | 24 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
| 26 | 5 | sseli 3979 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑋 → 𝑖 ∈ ℕ) |
| 27 | 26 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∈ ℕ) |
| 28 | 9 | sseli 3979 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑌 → 𝑗 ∈ ℕ) |
| 29 | 28 | ad2antll 729 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∈ ℕ) |
| 30 | 27, 29 | nnmulcld 12319 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ ℕ) |
| 31 | | breq1 5146 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑗 → (𝑥 ∥ 𝑁 ↔ 𝑗 ∥ 𝑁)) |
| 32 | 31, 8 | elrab2 3695 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑌 ↔ (𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑁)) |
| 33 | 32 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑌 → 𝑗 ∥ 𝑁) |
| 34 | 33 | ad2antll 729 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∥ 𝑁) |
| 35 | | breq1 5146 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑖 → (𝑥 ∥ 𝑀 ↔ 𝑖 ∥ 𝑀)) |
| 36 | 35, 4 | elrab2 3695 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ 𝑋 ↔ (𝑖 ∈ ℕ ∧ 𝑖 ∥ 𝑀)) |
| 37 | 36 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑋 → 𝑖 ∥ 𝑀) |
| 38 | 37 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∥ 𝑀) |
| 39 | 29 | nnzd 12640 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∈ ℤ) |
| 40 | | mpodvdsmulf1o.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 41 | 40 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑁 ∈ ℕ) |
| 42 | 41 | nnzd 12640 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑁 ∈ ℤ) |
| 43 | 27 | nnzd 12640 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∈ ℤ) |
| 44 | | dvdscmul 16320 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑗 ∥ 𝑁 → (𝑖 · 𝑗) ∥ (𝑖 · 𝑁))) |
| 45 | 39, 42, 43, 44 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑗 ∥ 𝑁 → (𝑖 · 𝑗) ∥ (𝑖 · 𝑁))) |
| 46 | | mpodvdsmulf1o.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 47 | 46 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑀 ∈ ℕ) |
| 48 | 47 | nnzd 12640 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑀 ∈ ℤ) |
| 49 | | dvdsmulc 16321 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∥ 𝑀 → (𝑖 · 𝑁) ∥ (𝑀 · 𝑁))) |
| 50 | 43, 48, 42, 49 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 ∥ 𝑀 → (𝑖 · 𝑁) ∥ (𝑀 · 𝑁))) |
| 51 | 30 | nnzd 12640 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ ℤ) |
| 52 | 43, 42 | zmulcld 12728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑁) ∈ ℤ) |
| 53 | 48, 42 | zmulcld 12728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑀 · 𝑁) ∈ ℤ) |
| 54 | | dvdstr 16331 |
. . . . . . . . . . 11
⊢ (((𝑖 · 𝑗) ∈ ℤ ∧ (𝑖 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝑖 · 𝑗) ∥ (𝑖 · 𝑁) ∧ (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
| 55 | 51, 52, 53, 54 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (((𝑖 · 𝑗) ∥ (𝑖 · 𝑁) ∧ (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
| 56 | 45, 50, 55 | syl2and 608 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → ((𝑗 ∥ 𝑁 ∧ 𝑖 ∥ 𝑀) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
| 57 | 34, 38, 56 | mp2and 699 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁)) |
| 58 | | breq1 5146 |
. . . . . . . . 9
⊢ (𝑥 = (𝑖 · 𝑗) → (𝑥 ∥ (𝑀 · 𝑁) ↔ (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
| 59 | | mpodvdsmulf1o.z |
. . . . . . . . 9
⊢ 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} |
| 60 | 58, 59 | elrab2 3695 |
. . . . . . . 8
⊢ ((𝑖 · 𝑗) ∈ 𝑍 ↔ ((𝑖 · 𝑗) ∈ ℕ ∧ (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
| 61 | 30, 57, 60 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ 𝑍) |
| 62 | 25, 61 | eqeltrrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) ∈ 𝑍) |
| 63 | 17, 62 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍) |
| 64 | 63 | ralrimivva 3202 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍) |
| 65 | | ffnov 7559 |
. . . 4
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍)) |
| 66 | 15, 64, 65 | sylanbrc 583 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍) |
| 67 | 19 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → 𝑖 ∈ ℂ) |
| 68 | 21 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → 𝑗 ∈ ℂ) |
| 69 | 67, 68, 22 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑖 · 𝑗)) |
| 70 | 7 | sseli 3979 |
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝑋 → 𝑚 ∈ ℂ) |
| 71 | 70 | ad2antrl 728 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → 𝑚 ∈ ℂ) |
| 72 | 10 | sseli 3979 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑌 → 𝑛 ∈ ℂ) |
| 73 | 72 | ad2antll 729 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → 𝑛 ∈ ℂ) |
| 74 | | ovmpot 7594 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) = (𝑚 · 𝑛)) |
| 75 | 71, 73, 74 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) = (𝑚 · 𝑛)) |
| 76 | 69, 75 | eqeq12d 2753 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) ↔ (𝑖 · 𝑗) = (𝑚 · 𝑛))) |
| 77 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℕ) |
| 78 | 77 | nnnn0d 12587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℕ0) |
| 79 | | simprll 779 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ 𝑋) |
| 80 | 5, 79 | sselid 3981 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℕ) |
| 81 | 80 | nnnn0d 12587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℕ0) |
| 82 | 77 | nnzd 12640 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℤ) |
| 83 | 29 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℕ) |
| 84 | 83 | nnzd 12640 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℤ) |
| 85 | | dvdsmul1 16315 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑖 ∥ (𝑖 · 𝑗)) |
| 86 | 82, 84, 85 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ (𝑖 · 𝑗)) |
| 87 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑚 · 𝑛)) |
| 88 | 7, 79 | sselid 3981 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℂ) |
| 89 | | simprlr 780 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ 𝑌) |
| 90 | 10, 89 | sselid 3981 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℂ) |
| 91 | 88, 90 | mulcomd 11282 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 · 𝑛) = (𝑛 · 𝑚)) |
| 92 | 87, 91 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑛 · 𝑚)) |
| 93 | 86, 92 | breqtrd 5169 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ (𝑛 · 𝑚)) |
| 94 | 9, 89 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℕ) |
| 95 | 94 | nnzd 12640 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℤ) |
| 96 | 42 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑁 ∈ ℤ) |
| 97 | 82, 96 | gcdcomd 16551 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑁) = (𝑁 gcd 𝑖)) |
| 98 | 48 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑀 ∈ ℤ) |
| 99 | 40 | nnzd 12640 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 100 | 46 | nnzd 12640 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 101 | 99, 100 | gcdcomd 16551 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
| 102 | | mpodvdsmulf1o.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 103 | 101, 102 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 gcd 𝑀) = 1) |
| 104 | 103 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑀) = 1) |
| 105 | 38 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ 𝑀) |
| 106 | | rpdvds 16697 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑁 gcd 𝑀) = 1 ∧ 𝑖 ∥ 𝑀)) → (𝑁 gcd 𝑖) = 1) |
| 107 | 96, 82, 98, 104, 105, 106 | syl32anc 1380 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑖) = 1) |
| 108 | 97, 107 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑁) = 1) |
| 109 | | breq1 5146 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑛 → (𝑥 ∥ 𝑁 ↔ 𝑛 ∥ 𝑁)) |
| 110 | 109, 8 | elrab2 3695 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝑌 ↔ (𝑛 ∈ ℕ ∧ 𝑛 ∥ 𝑁)) |
| 111 | 110 | simprbi 496 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝑌 → 𝑛 ∥ 𝑁) |
| 112 | 89, 111 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∥ 𝑁) |
| 113 | | rpdvds 16697 |
. . . . . . . . . . . 12
⊢ (((𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑖 gcd 𝑁) = 1 ∧ 𝑛 ∥ 𝑁)) → (𝑖 gcd 𝑛) = 1) |
| 114 | 82, 95, 96, 108, 112, 113 | syl32anc 1380 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑛) = 1) |
| 115 | 80 | nnzd 12640 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℤ) |
| 116 | | coprmdvds 16690 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑖 ∥ (𝑛 · 𝑚) ∧ (𝑖 gcd 𝑛) = 1) → 𝑖 ∥ 𝑚)) |
| 117 | 82, 95, 115, 116 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → ((𝑖 ∥ (𝑛 · 𝑚) ∧ (𝑖 gcd 𝑛) = 1) → 𝑖 ∥ 𝑚)) |
| 118 | 93, 114, 117 | mp2and 699 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ 𝑚) |
| 119 | | dvdsmul1 16315 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∥ (𝑚 · 𝑛)) |
| 120 | 115, 95, 119 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ (𝑚 · 𝑛)) |
| 121 | 77 | nncnd 12282 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℂ) |
| 122 | 83 | nncnd 12282 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℂ) |
| 123 | 121, 122 | mulcomd 11282 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑗 · 𝑖)) |
| 124 | 87, 123 | eqtr3d 2779 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 · 𝑛) = (𝑗 · 𝑖)) |
| 125 | 120, 124 | breqtrd 5169 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ (𝑗 · 𝑖)) |
| 126 | 115, 96 | gcdcomd 16551 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑁) = (𝑁 gcd 𝑚)) |
| 127 | | breq1 5146 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑚 → (𝑥 ∥ 𝑀 ↔ 𝑚 ∥ 𝑀)) |
| 128 | 127, 4 | elrab2 3695 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ 𝑋 ↔ (𝑚 ∈ ℕ ∧ 𝑚 ∥ 𝑀)) |
| 129 | 128 | simprbi 496 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ 𝑋 → 𝑚 ∥ 𝑀) |
| 130 | 79, 129 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ 𝑀) |
| 131 | | rpdvds 16697 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑁 gcd 𝑀) = 1 ∧ 𝑚 ∥ 𝑀)) → (𝑁 gcd 𝑚) = 1) |
| 132 | 96, 115, 98, 104, 130, 131 | syl32anc 1380 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑚) = 1) |
| 133 | 126, 132 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑁) = 1) |
| 134 | 34 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∥ 𝑁) |
| 135 | | rpdvds 16697 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑚 gcd 𝑁) = 1 ∧ 𝑗 ∥ 𝑁)) → (𝑚 gcd 𝑗) = 1) |
| 136 | 115, 84, 96, 133, 134, 135 | syl32anc 1380 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑗) = 1) |
| 137 | | coprmdvds 16690 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑚 ∥ (𝑗 · 𝑖) ∧ (𝑚 gcd 𝑗) = 1) → 𝑚 ∥ 𝑖)) |
| 138 | 115, 84, 82, 137 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → ((𝑚 ∥ (𝑗 · 𝑖) ∧ (𝑚 gcd 𝑗) = 1) → 𝑚 ∥ 𝑖)) |
| 139 | 125, 136,
138 | mp2and 699 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ 𝑖) |
| 140 | | dvdseq 16351 |
. . . . . . . . . 10
⊢ (((𝑖 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) ∧ (𝑖 ∥ 𝑚 ∧ 𝑚 ∥ 𝑖)) → 𝑖 = 𝑚) |
| 141 | 78, 81, 118, 139, 140 | syl22anc 839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 = 𝑚) |
| 142 | 77 | nnne0d 12316 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ≠ 0) |
| 143 | 141 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑛) = (𝑚 · 𝑛)) |
| 144 | 87, 143 | eqtr4d 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑖 · 𝑛)) |
| 145 | 122, 90, 121, 142, 144 | mulcanad 11898 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 = 𝑛) |
| 146 | 141, 145 | opeq12d 4881 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉) |
| 147 | 146 | expr 456 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 148 | 76, 147 | sylbid 240 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 149 | 148 | ralrimivva 3202 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 150 | 149 | ralrimivva 3202 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 151 | | fvres 6925 |
. . . . . . . . 9
⊢ (𝑢 ∈ (𝑋 × 𝑌) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢)) |
| 152 | | fvres 6925 |
. . . . . . . . 9
⊢ (𝑣 ∈ (𝑋 × 𝑌) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣)) |
| 153 | 151, 152 | eqeqan12d 2751 |
. . . . . . . 8
⊢ ((𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) → ((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣))) |
| 154 | 153 | imbi1d 341 |
. . . . . . 7
⊢ ((𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) → (((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣))) |
| 155 | 154 | ralbidva 3176 |
. . . . . 6
⊢ (𝑢 ∈ (𝑋 × 𝑌) → (∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣))) |
| 156 | 155 | ralbiia 3091 |
. . . . 5
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣)) |
| 157 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑚, 𝑛〉)) |
| 158 | | df-ov 7434 |
. . . . . . . . . . 11
⊢ (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑚, 𝑛〉) |
| 159 | 157, 158 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛)) |
| 160 | 159 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑚, 𝑛〉 → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛))) |
| 161 | | eqeq2 2749 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑚, 𝑛〉 → (𝑢 = 𝑣 ↔ 𝑢 = 〈𝑚, 𝑛〉)) |
| 162 | 160, 161 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = 〈𝑚, 𝑛〉))) |
| 163 | 162 | ralxp 5852 |
. . . . . . 7
⊢
(∀𝑣 ∈
(𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = 〈𝑚, 𝑛〉)) |
| 164 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑖, 𝑗〉)) |
| 165 | | df-ov 7434 |
. . . . . . . . . . 11
⊢ (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑖, 𝑗〉) |
| 166 | 164, 165 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
| 167 | 166 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) ↔ (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛))) |
| 168 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (𝑢 = 〈𝑚, 𝑛〉 ↔ 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 169 | 167, 168 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = 〈𝑚, 𝑛〉) ↔ ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
| 170 | 169 | 2ralbidv 3221 |
. . . . . . 7
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = 〈𝑚, 𝑛〉) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
| 171 | 163, 170 | bitrid 283 |
. . . . . 6
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
| 172 | 171 | ralxp 5852 |
. . . . 5
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 173 | 156, 172 | bitri 275 |
. . . 4
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 174 | 150, 173 | sylibr 234 |
. . 3
⊢ (𝜑 → ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣)) |
| 175 | | dff13 7275 |
. . 3
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1→𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣))) |
| 176 | 66, 174, 175 | sylanbrc 583 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1→𝑍) |
| 177 | | breq1 5146 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝑥 ∥ (𝑀 · 𝑁) ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
| 178 | 177, 59 | elrab2 3695 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑍 ↔ (𝑤 ∈ ℕ ∧ 𝑤 ∥ (𝑀 · 𝑁))) |
| 179 | 178 | simplbi 497 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑍 → 𝑤 ∈ ℕ) |
| 180 | 179 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ ℕ) |
| 181 | 180 | nnzd 12640 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ ℤ) |
| 182 | 46 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ∈ ℕ) |
| 183 | 182 | nnzd 12640 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ∈ ℤ) |
| 184 | 182 | nnne0d 12316 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ≠ 0) |
| 185 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑤 = 0 ∧ 𝑀 = 0) → 𝑀 = 0) |
| 186 | 185 | necon3ai 2965 |
. . . . . . . . 9
⊢ (𝑀 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑀 = 0)) |
| 187 | 184, 186 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ¬ (𝑤 = 0 ∧ 𝑀 = 0)) |
| 188 | | gcdn0cl 16539 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬
(𝑤 = 0 ∧ 𝑀 = 0)) → (𝑤 gcd 𝑀) ∈ ℕ) |
| 189 | 181, 183,
187, 188 | syl21anc 838 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∈ ℕ) |
| 190 | | gcddvds 16540 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
| 191 | 181, 183,
190 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
| 192 | 191 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∥ 𝑀) |
| 193 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = (𝑤 gcd 𝑀) → (𝑥 ∥ 𝑀 ↔ (𝑤 gcd 𝑀) ∥ 𝑀)) |
| 194 | 193, 4 | elrab2 3695 |
. . . . . . 7
⊢ ((𝑤 gcd 𝑀) ∈ 𝑋 ↔ ((𝑤 gcd 𝑀) ∈ ℕ ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
| 195 | 189, 192,
194 | sylanbrc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∈ 𝑋) |
| 196 | 40 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ∈ ℕ) |
| 197 | 196 | nnzd 12640 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ∈ ℤ) |
| 198 | 196 | nnne0d 12316 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ≠ 0) |
| 199 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑤 = 0 ∧ 𝑁 = 0) → 𝑁 = 0) |
| 200 | 199 | necon3ai 2965 |
. . . . . . . . 9
⊢ (𝑁 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑁 = 0)) |
| 201 | 198, 200 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ¬ (𝑤 = 0 ∧ 𝑁 = 0)) |
| 202 | | gcdn0cl 16539 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑤 = 0 ∧ 𝑁 = 0)) → (𝑤 gcd 𝑁) ∈ ℕ) |
| 203 | 181, 197,
201, 202 | syl21anc 838 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∈ ℕ) |
| 204 | | gcddvds 16540 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
| 205 | 181, 197,
204 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
| 206 | 205 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∥ 𝑁) |
| 207 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = (𝑤 gcd 𝑁) → (𝑥 ∥ 𝑁 ↔ (𝑤 gcd 𝑁) ∥ 𝑁)) |
| 208 | 207, 8 | elrab2 3695 |
. . . . . . 7
⊢ ((𝑤 gcd 𝑁) ∈ 𝑌 ↔ ((𝑤 gcd 𝑁) ∈ ℕ ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
| 209 | 203, 206,
208 | sylanbrc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∈ 𝑌) |
| 210 | 195, 209 | opelxpd 5724 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 ∈ (𝑋 × 𝑌)) |
| 211 | 210 | fvresd 6926 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
| 212 | | df-ov 7434 |
. . . . . . . 8
⊢ ((𝑤 gcd 𝑀)(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))(𝑤 gcd 𝑁)) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) |
| 213 | 189 | nncnd 12282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∈ ℂ) |
| 214 | 203 | nncnd 12282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∈ ℂ) |
| 215 | | ovmpot 7594 |
. . . . . . . . 9
⊢ (((𝑤 gcd 𝑀) ∈ ℂ ∧ (𝑤 gcd 𝑁) ∈ ℂ) → ((𝑤 gcd 𝑀)(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))(𝑤 gcd 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
| 216 | 213, 214,
215 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑀)(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))(𝑤 gcd 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
| 217 | 212, 216 | eqtr3id 2791 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
| 218 | | df-ov 7434 |
. . . . . . . 8
⊢ ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) |
| 219 | 218 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
| 220 | 211, 217,
219 | 3eqtrd 2781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
| 221 | 102 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑀 gcd 𝑁) = 1) |
| 222 | | rpmulgcd2 16693 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑤 gcd (𝑀 · 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
| 223 | 181, 183,
197, 221, 222 | syl31anc 1375 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
| 224 | 223, 218 | eqtrdi 2793 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
| 225 | 178 | simprbi 496 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑍 → 𝑤 ∥ (𝑀 · 𝑁)) |
| 226 | 225 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∥ (𝑀 · 𝑁)) |
| 227 | 46, 40 | nnmulcld 12319 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℕ) |
| 228 | | gcdeq 16590 |
. . . . . . . 8
⊢ ((𝑤 ∈ ℕ ∧ (𝑀 · 𝑁) ∈ ℕ) → ((𝑤 gcd (𝑀 · 𝑁)) = 𝑤 ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
| 229 | 179, 227,
228 | syl2anr 597 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd (𝑀 · 𝑁)) = 𝑤 ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
| 230 | 226, 229 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = 𝑤) |
| 231 | 220, 224,
230 | 3eqtr2rd 2784 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
| 232 | | fveq2 6906 |
. . . . . 6
⊢ (𝑢 = 〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
| 233 | 232 | rspceeqv 3645 |
. . . . 5
⊢
((〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 ∈ (𝑋 × 𝑌) ∧ 𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) → ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢)) |
| 234 | 210, 231,
233 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢)) |
| 235 | 234 | ralrimiva 3146 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ 𝑍 ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢)) |
| 236 | | dffo3 7122 |
. . 3
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑤 ∈ 𝑍 ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢))) |
| 237 | 66, 235, 236 | sylanbrc 583 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍) |
| 238 | | df-f1o 6568 |
. 2
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1→𝑍 ∧ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍)) |
| 239 | 176, 237,
238 | sylanbrc 583 |
1
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍) |