MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpmulgcd2 Structured version   Visualization version   GIF version

Theorem rpmulgcd2 16289
Description: If 𝑀 is relatively prime to 𝑁, then the GCD of 𝐾 with 𝑀 · 𝑁 is the product of the GCDs with 𝑀 and 𝑁 respectively. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
rpmulgcd2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))

Proof of Theorem rpmulgcd2
StepHypRef Expression
1 simpl1 1189 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝐾 ∈ ℤ)
2 simpl2 1190 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
3 simpl3 1191 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
42, 3zmulcld 12361 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 · 𝑁) ∈ ℤ)
51, 4gcdcld 16143 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0)
61, 2gcdcld 16143 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∈ ℕ0)
71, 3gcdcld 16143 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∈ ℕ0)
86, 7nn0mulcld 12228 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℕ0)
9 mulgcddvds 16288 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
109adantr 480 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
11 gcddvds 16138 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
121, 2, 11syl2anc 583 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
1312simpld 494 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∥ 𝐾)
14 gcddvds 16138 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
151, 3, 14syl2anc 583 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
1615simpld 494 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∥ 𝐾)
176nn0zd 12353 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∈ ℤ)
187nn0zd 12353 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∈ ℤ)
1917, 18gcdcld 16143 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℕ0)
2019nn0zd 12353 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ)
21 gcddvds 16138 . . . . . . . . . . 11 (((𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁)))
2217, 18, 21syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁)))
2322simpld 494 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀))
2412simprd 495 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∥ 𝑀)
2520, 17, 2, 23, 24dvdstrd 15932 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀)
2622simprd 495 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁))
2715simprd 495 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∥ 𝑁)
2820, 18, 3, 26, 27dvdstrd 15932 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁)
29 dvdsgcd 16180 . . . . . . . . 9 ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀 ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁)))
3020, 2, 3, 29syl3anc 1369 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀 ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁)))
3125, 28, 30mp2and 695 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁))
32 simpr 484 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
3331, 32breqtrd 5096 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1)
34 dvds1 15956 . . . . . . 7 (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℕ0 → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1 ↔ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1))
3519, 34syl 17 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1 ↔ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1))
3633, 35mpbid 231 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1)
37 coprmdvds2 16287 . . . . 5 ((((𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝐾) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾))
3817, 18, 1, 36, 37syl31anc 1371 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝐾) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾))
3913, 16, 38mp2and 695 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾)
40 dvdscmul 15920 . . . . . 6 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁)))
4118, 3, 17, 40syl3anc 1369 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑁) ∥ 𝑁 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁)))
42 dvdsmulc 15921 . . . . . 6 (((𝐾 gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝑀 → ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)))
4317, 2, 3, 42syl3anc 1369 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) ∥ 𝑀 → ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)))
4417, 18zmulcld 12361 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ)
4517, 3zmulcld 12361 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · 𝑁) ∈ ℤ)
46 dvdstr 15931 . . . . . 6 ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ ∧ ((𝐾 gcd 𝑀) · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁) ∧ ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
4744, 45, 4, 46syl3anc 1369 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁) ∧ ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
4841, 43, 47syl2and 607 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑁) ∥ 𝑁 ∧ (𝐾 gcd 𝑀) ∥ 𝑀) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
4927, 24, 48mp2and 695 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁))
50 dvdsgcd 16180 . . . 4 ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁))))
5144, 1, 4, 50syl3anc 1369 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁))))
5239, 49, 51mp2and 695 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁)))
53 dvdseq 15951 . 2 ((((𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℕ0) ∧ ((𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁)))) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
545, 8, 10, 52, 53syl22anc 835 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  1c1 10803   · cmul 10807  0cn0 12163  cz 12249  cdvds 15891   gcd cgcd 16129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130
This theorem is referenced by:  dvdsmulf1o  26248
  Copyright terms: Public domain W3C validator