MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpmulgcd2 Structured version   Visualization version   GIF version

Theorem rpmulgcd2 16703
Description: If 𝑀 is relatively prime to 𝑁, then the GCD of 𝐾 with 𝑀 · 𝑁 is the product of the GCDs with 𝑀 and 𝑁 respectively. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
rpmulgcd2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))

Proof of Theorem rpmulgcd2
StepHypRef Expression
1 simpl1 1191 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝐾 ∈ ℤ)
2 simpl2 1192 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
3 simpl3 1193 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
42, 3zmulcld 12753 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 · 𝑁) ∈ ℤ)
51, 4gcdcld 16554 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0)
61, 2gcdcld 16554 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∈ ℕ0)
71, 3gcdcld 16554 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∈ ℕ0)
86, 7nn0mulcld 12618 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℕ0)
9 mulgcddvds 16702 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
109adantr 480 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
11 gcddvds 16549 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
121, 2, 11syl2anc 583 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
1312simpld 494 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∥ 𝐾)
14 gcddvds 16549 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
151, 3, 14syl2anc 583 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
1615simpld 494 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∥ 𝐾)
176nn0zd 12665 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∈ ℤ)
187nn0zd 12665 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∈ ℤ)
1917, 18gcdcld 16554 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℕ0)
2019nn0zd 12665 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ)
21 gcddvds 16549 . . . . . . . . . . 11 (((𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁)))
2217, 18, 21syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁)))
2322simpld 494 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀))
2412simprd 495 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∥ 𝑀)
2520, 17, 2, 23, 24dvdstrd 16343 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀)
2622simprd 495 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁))
2715simprd 495 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∥ 𝑁)
2820, 18, 3, 26, 27dvdstrd 16343 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁)
29 dvdsgcd 16591 . . . . . . . . 9 ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀 ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁)))
3020, 2, 3, 29syl3anc 1371 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀 ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁)))
3125, 28, 30mp2and 698 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁))
32 simpr 484 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
3331, 32breqtrd 5192 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1)
34 dvds1 16367 . . . . . . 7 (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℕ0 → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1 ↔ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1))
3519, 34syl 17 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1 ↔ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1))
3633, 35mpbid 232 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1)
37 coprmdvds2 16701 . . . . 5 ((((𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝐾) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾))
3817, 18, 1, 36, 37syl31anc 1373 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝐾) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾))
3913, 16, 38mp2and 698 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾)
40 dvdscmul 16331 . . . . . 6 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁)))
4118, 3, 17, 40syl3anc 1371 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑁) ∥ 𝑁 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁)))
42 dvdsmulc 16332 . . . . . 6 (((𝐾 gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝑀 → ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)))
4317, 2, 3, 42syl3anc 1371 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) ∥ 𝑀 → ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)))
4417, 18zmulcld 12753 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ)
4517, 3zmulcld 12753 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · 𝑁) ∈ ℤ)
46 dvdstr 16342 . . . . . 6 ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ ∧ ((𝐾 gcd 𝑀) · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁) ∧ ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
4744, 45, 4, 46syl3anc 1371 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁) ∧ ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
4841, 43, 47syl2and 607 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑁) ∥ 𝑁 ∧ (𝐾 gcd 𝑀) ∥ 𝑀) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
4927, 24, 48mp2and 698 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁))
50 dvdsgcd 16591 . . . 4 ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁))))
5144, 1, 4, 50syl3anc 1371 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁))))
5239, 49, 51mp2and 698 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁)))
53 dvdseq 16362 . 2 ((((𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℕ0) ∧ ((𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁)))) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
545, 8, 10, 52, 53syl22anc 838 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  1c1 11185   · cmul 11189  0cn0 12553  cz 12639  cdvds 16302   gcd cgcd 16540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541
This theorem is referenced by:  mpodvdsmulf1o  27255  dvdsmulf1o  27257
  Copyright terms: Public domain W3C validator