MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpmulgcd2 Structured version   Visualization version   GIF version

Theorem rpmulgcd2 15989
Description: If 𝑀 is relatively prime to 𝑁, then the GCD of 𝐾 with 𝑀 · 𝑁 is the product of the GCDs with 𝑀 and 𝑁 respectively. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
rpmulgcd2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))

Proof of Theorem rpmulgcd2
StepHypRef Expression
1 simpl1 1188 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝐾 ∈ ℤ)
2 simpl2 1189 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
3 simpl3 1190 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
42, 3zmulcld 12081 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 · 𝑁) ∈ ℤ)
51, 4gcdcld 15846 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0)
61, 2gcdcld 15846 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∈ ℕ0)
71, 3gcdcld 15846 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∈ ℕ0)
86, 7nn0mulcld 11948 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℕ0)
9 mulgcddvds 15988 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
109adantr 484 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
11 gcddvds 15841 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
121, 2, 11syl2anc 587 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
1312simpld 498 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∥ 𝐾)
14 gcddvds 15841 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
151, 3, 14syl2anc 587 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
1615simpld 498 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∥ 𝐾)
176nn0zd 12073 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∈ ℤ)
187nn0zd 12073 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∈ ℤ)
19 gcddvds 15841 . . . . . . . . . . 11 (((𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁)))
2017, 18, 19syl2anc 587 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁)))
2120simpld 498 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀))
2212simprd 499 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∥ 𝑀)
2317, 18gcdcld 15846 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℕ0)
2423nn0zd 12073 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ)
25 dvdstr 15637 . . . . . . . . . 10 ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ (𝐾 gcd 𝑀) ∥ 𝑀) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀))
2624, 17, 2, 25syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ (𝐾 gcd 𝑀) ∥ 𝑀) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀))
2721, 22, 26mp2and 698 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀)
2820simprd 499 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁))
2915simprd 499 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∥ 𝑁)
30 dvdstr 15637 . . . . . . . . . 10 ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁) ∧ (𝐾 gcd 𝑁) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁))
3124, 18, 3, 30syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁) ∧ (𝐾 gcd 𝑁) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁))
3228, 29, 31mp2and 698 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁)
33 dvdsgcd 15881 . . . . . . . . 9 ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀 ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁)))
3424, 2, 3, 33syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀 ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁)))
3527, 32, 34mp2and 698 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁))
36 simpr 488 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
3735, 36breqtrd 5068 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1)
38 dvds1 15660 . . . . . . 7 (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℕ0 → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1 ↔ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1))
3923, 38syl 17 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1 ↔ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1))
4037, 39mpbid 235 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1)
41 coprmdvds2 15987 . . . . 5 ((((𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝐾) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾))
4217, 18, 1, 40, 41syl31anc 1370 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝐾) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾))
4313, 16, 42mp2and 698 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾)
44 dvdscmul 15627 . . . . . 6 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁)))
4518, 3, 17, 44syl3anc 1368 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑁) ∥ 𝑁 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁)))
46 dvdsmulc 15628 . . . . . 6 (((𝐾 gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝑀 → ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)))
4717, 2, 3, 46syl3anc 1368 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) ∥ 𝑀 → ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)))
4817, 18zmulcld 12081 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ)
4917, 3zmulcld 12081 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · 𝑁) ∈ ℤ)
50 dvdstr 15637 . . . . . 6 ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ ∧ ((𝐾 gcd 𝑀) · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁) ∧ ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
5148, 49, 4, 50syl3anc 1368 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁) ∧ ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
5245, 47, 51syl2and 610 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑁) ∥ 𝑁 ∧ (𝐾 gcd 𝑀) ∥ 𝑀) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
5329, 22, 52mp2and 698 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁))
54 dvdsgcd 15881 . . . 4 ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁))))
5548, 1, 4, 54syl3anc 1368 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁))))
5643, 53, 55mp2and 698 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁)))
57 dvdseq 15655 . 2 ((((𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℕ0) ∧ ((𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁)))) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
585, 8, 10, 56, 57syl22anc 837 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114   class class class wbr 5042  (class class class)co 7140  1c1 10527   · cmul 10531  0cn0 11885  cz 11969  cdvds 15598   gcd cgcd 15832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-dvds 15599  df-gcd 15833
This theorem is referenced by:  dvdsmulf1o  25777
  Copyright terms: Public domain W3C validator