MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpmulgcd2 Structured version   Visualization version   GIF version

Theorem rpmulgcd2 16690
Description: If 𝑀 is relatively prime to 𝑁, then the GCD of 𝐾 with 𝑀 · 𝑁 is the product of the GCDs with 𝑀 and 𝑁 respectively. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
rpmulgcd2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))

Proof of Theorem rpmulgcd2
StepHypRef Expression
1 simpl1 1190 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝐾 ∈ ℤ)
2 simpl2 1191 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
3 simpl3 1192 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
42, 3zmulcld 12726 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 · 𝑁) ∈ ℤ)
51, 4gcdcld 16542 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0)
61, 2gcdcld 16542 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∈ ℕ0)
71, 3gcdcld 16542 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∈ ℕ0)
86, 7nn0mulcld 12590 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℕ0)
9 mulgcddvds 16689 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
109adantr 480 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
11 gcddvds 16537 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
121, 2, 11syl2anc 584 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
1312simpld 494 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∥ 𝐾)
14 gcddvds 16537 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
151, 3, 14syl2anc 584 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
1615simpld 494 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∥ 𝐾)
176nn0zd 12637 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∈ ℤ)
187nn0zd 12637 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∈ ℤ)
1917, 18gcdcld 16542 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℕ0)
2019nn0zd 12637 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ)
21 gcddvds 16537 . . . . . . . . . . 11 (((𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁)))
2217, 18, 21syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁)))
2322simpld 494 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀))
2412simprd 495 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∥ 𝑀)
2520, 17, 2, 23, 24dvdstrd 16329 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀)
2622simprd 495 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁))
2715simprd 495 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∥ 𝑁)
2820, 18, 3, 26, 27dvdstrd 16329 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁)
29 dvdsgcd 16578 . . . . . . . . 9 ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀 ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁)))
3020, 2, 3, 29syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀 ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁)))
3125, 28, 30mp2and 699 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁))
32 simpr 484 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
3331, 32breqtrd 5174 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1)
34 dvds1 16353 . . . . . . 7 (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℕ0 → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1 ↔ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1))
3519, 34syl 17 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1 ↔ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1))
3633, 35mpbid 232 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1)
37 coprmdvds2 16688 . . . . 5 ((((𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝐾) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾))
3817, 18, 1, 36, 37syl31anc 1372 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝐾) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾))
3913, 16, 38mp2and 699 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾)
40 dvdscmul 16317 . . . . . 6 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁)))
4118, 3, 17, 40syl3anc 1370 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑁) ∥ 𝑁 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁)))
42 dvdsmulc 16318 . . . . . 6 (((𝐾 gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝑀 → ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)))
4317, 2, 3, 42syl3anc 1370 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) ∥ 𝑀 → ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)))
4417, 18zmulcld 12726 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ)
4517, 3zmulcld 12726 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · 𝑁) ∈ ℤ)
46 dvdstr 16328 . . . . . 6 ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ ∧ ((𝐾 gcd 𝑀) · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁) ∧ ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
4744, 45, 4, 46syl3anc 1370 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁) ∧ ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
4841, 43, 47syl2and 608 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑁) ∥ 𝑁 ∧ (𝐾 gcd 𝑀) ∥ 𝑀) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
4927, 24, 48mp2and 699 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁))
50 dvdsgcd 16578 . . . 4 ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁))))
5144, 1, 4, 50syl3anc 1370 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁))))
5239, 49, 51mp2and 699 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁)))
53 dvdseq 16348 . 2 ((((𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℕ0) ∧ ((𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁)))) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
545, 8, 10, 52, 53syl22anc 839 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  1c1 11154   · cmul 11158  0cn0 12524  cz 12611  cdvds 16287   gcd cgcd 16528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529
This theorem is referenced by:  mpodvdsmulf1o  27252  dvdsmulf1o  27254
  Copyright terms: Public domain W3C validator