MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmlem12 Structured version   Visualization version   GIF version

Theorem latmlem12 18429
Description: Add join to both sides of a lattice ordering. (ss2in 4236 analog.) (Contributed by NM, 10-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐡 = (Baseβ€˜πΎ)
latmle.l ≀ = (leβ€˜πΎ)
latmle.m ∧ = (meetβ€˜πΎ)
Assertion
Ref Expression
latmlem12 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑍 ≀ π‘Š) β†’ (𝑋 ∧ 𝑍) ≀ (π‘Œ ∧ π‘Š)))

Proof of Theorem latmlem12
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝐾 ∈ Lat)
2 simp2l 1198 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
3 simp2r 1199 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
4 simp3l 1200 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝑍 ∈ 𝐡)
5 latmle.b . . . 4 𝐡 = (Baseβ€˜πΎ)
6 latmle.l . . . 4 ≀ = (leβ€˜πΎ)
7 latmle.m . . . 4 ∧ = (meetβ€˜πΎ)
85, 6, 7latmlem1 18427 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ π‘Œ β†’ (𝑋 ∧ 𝑍) ≀ (π‘Œ ∧ 𝑍)))
91, 2, 3, 4, 8syl13anc 1371 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (𝑋 ≀ π‘Œ β†’ (𝑋 ∧ 𝑍) ≀ (π‘Œ ∧ 𝑍)))
10 simp3r 1201 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ π‘Š ∈ 𝐡)
115, 6, 7latmlem2 18428 . . 3 ((𝐾 ∈ Lat ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑍 ≀ π‘Š β†’ (π‘Œ ∧ 𝑍) ≀ (π‘Œ ∧ π‘Š)))
121, 4, 10, 3, 11syl13anc 1371 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (𝑍 ≀ π‘Š β†’ (π‘Œ ∧ 𝑍) ≀ (π‘Œ ∧ π‘Š)))
135, 7latmcl 18398 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ (𝑋 ∧ 𝑍) ∈ 𝐡)
141, 2, 4, 13syl3anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (𝑋 ∧ 𝑍) ∈ 𝐡)
155, 7latmcl 18398 . . . 4 ((𝐾 ∈ Lat ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ (π‘Œ ∧ 𝑍) ∈ 𝐡)
161, 3, 4, 15syl3anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (π‘Œ ∧ 𝑍) ∈ 𝐡)
175, 7latmcl 18398 . . . 4 ((𝐾 ∈ Lat ∧ π‘Œ ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (π‘Œ ∧ π‘Š) ∈ 𝐡)
181, 3, 10, 17syl3anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (π‘Œ ∧ π‘Š) ∈ 𝐡)
195, 6lattr 18402 . . 3 ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑍) ∈ 𝐡 ∧ (π‘Œ ∧ 𝑍) ∈ 𝐡 ∧ (π‘Œ ∧ π‘Š) ∈ 𝐡)) β†’ (((𝑋 ∧ 𝑍) ≀ (π‘Œ ∧ 𝑍) ∧ (π‘Œ ∧ 𝑍) ≀ (π‘Œ ∧ π‘Š)) β†’ (𝑋 ∧ 𝑍) ≀ (π‘Œ ∧ π‘Š)))
201, 14, 16, 18, 19syl13anc 1371 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (((𝑋 ∧ 𝑍) ≀ (π‘Œ ∧ 𝑍) ∧ (π‘Œ ∧ 𝑍) ≀ (π‘Œ ∧ π‘Š)) β†’ (𝑋 ∧ 𝑍) ≀ (π‘Œ ∧ π‘Š)))
219, 12, 20syl2and 607 1 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑍 ≀ π‘Š) β†’ (𝑋 ∧ 𝑍) ≀ (π‘Œ ∧ π‘Š)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  lecple 17209  meetcmee 18270  Latclat 18389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-poset 18271  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-lat 18390
This theorem is referenced by:  dalem10  38848  dalem55  38902  dalawlem3  39048  dalawlem7  39052  dalawlem11  39056  dalawlem12  39057  cdlemk51  40128
  Copyright terms: Public domain W3C validator