|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > latmlem12 | Structured version Visualization version GIF version | ||
| Description: Add join to both sides of a lattice ordering. (ss2in 4244 analog.) (Contributed by NM, 10-Nov-2011.) | 
| Ref | Expression | 
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) | 
| latmle.l | ⊢ ≤ = (le‘𝐾) | 
| latmle.m | ⊢ ∧ = (meet‘𝐾) | 
| Ref | Expression | 
|---|---|
| latmlem12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑍 ≤ 𝑊) → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑊))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 2 | simp2l 1199 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 3 | simp2r 1200 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 4 | simp3l 1201 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 5 | latmle.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | latmle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 7 | latmle.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 8 | 5, 6, 7 | latmlem1 18515 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) | 
| 9 | 1, 2, 3, 4, 8 | syl13anc 1373 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) | 
| 10 | simp3r 1202 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑊 ∈ 𝐵) | |
| 11 | 5, 6, 7 | latmlem2 18516 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑍 ≤ 𝑊 → (𝑌 ∧ 𝑍) ≤ (𝑌 ∧ 𝑊))) | 
| 12 | 1, 4, 10, 3, 11 | syl13anc 1373 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 ≤ 𝑊 → (𝑌 ∧ 𝑍) ≤ (𝑌 ∧ 𝑊))) | 
| 13 | 5, 7 | latmcl 18486 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ∈ 𝐵) | 
| 14 | 1, 2, 4, 13 | syl3anc 1372 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ∈ 𝐵) | 
| 15 | 5, 7 | latmcl 18486 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∧ 𝑍) ∈ 𝐵) | 
| 16 | 1, 3, 4, 15 | syl3anc 1372 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 ∧ 𝑍) ∈ 𝐵) | 
| 17 | 5, 7 | latmcl 18486 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) | 
| 18 | 1, 3, 10, 17 | syl3anc 1372 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 ∧ 𝑊) ∈ 𝐵) | 
| 19 | 5, 6 | lattr 18490 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ (𝑌 ∧ 𝑍) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍) ∧ (𝑌 ∧ 𝑍) ≤ (𝑌 ∧ 𝑊)) → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑊))) | 
| 20 | 1, 14, 16, 18, 19 | syl13anc 1373 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍) ∧ (𝑌 ∧ 𝑍) ≤ (𝑌 ∧ 𝑊)) → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑊))) | 
| 21 | 9, 12, 20 | syl2and 608 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑍 ≤ 𝑊) → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑊))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 lecple 17305 meetcmee 18359 Latclat 18477 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-poset 18360 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-lat 18478 | 
| This theorem is referenced by: dalem10 39676 dalem55 39730 dalawlem3 39876 dalawlem7 39880 dalawlem11 39884 dalawlem12 39885 cdlemk51 40956 | 
| Copyright terms: Public domain | W3C validator |