MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcqmul Structured version   Visualization version   GIF version

Theorem pcqmul 16824
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
pcqmul ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))

Proof of Theorem pcqmul
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1200 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℚ)
2 elq 12909 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
31, 2sylib 218 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
4 simp3l 1202 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℚ)
5 elq 12909 . . 3 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
64, 5sylib 218 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
7 reeanv 3209 . . 3 (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
8 reeanv 3209 . . . . 5 (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
9 simp2r 1201 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
10 simp3r 1203 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
119, 10jca 511 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0))
1211ad2antrr 726 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0))
13 simp1 1136 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℙ)
14 simprl 770 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ∈ ℕ)
1514nncnd 12202 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ∈ ℂ)
1614nnne0d 12236 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ≠ 0)
1715, 16div0d 11957 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (0 / 𝑦) = 0)
18 oveq1 7394 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
1918eqeq1d 2731 . . . . . . . . . . . 12 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
2017, 19syl5ibrcom 247 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
2120necon3d 2946 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0))
22 simprr 772 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℕ)
2322nncnd 12202 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℂ)
2422nnne0d 12236 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ≠ 0)
2523, 24div0d 11957 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (0 / 𝑤) = 0)
26 oveq1 7394 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧 / 𝑤) = (0 / 𝑤))
2726eqeq1d 2731 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧 / 𝑤) = 0 ↔ (0 / 𝑤) = 0))
2825, 27syl5ibrcom 247 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑧 = 0 → (𝑧 / 𝑤) = 0))
2928necon3d 2946 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑧 / 𝑤) ≠ 0 → 𝑧 ≠ 0))
30 simpll 766 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑃 ∈ ℙ)
31 simplrl 776 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ∈ ℤ)
32 simplrr 777 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ∈ ℤ)
3331, 32zmulcld 12644 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑥 · 𝑧) ∈ ℤ)
3431zcnd 12639 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ∈ ℂ)
3532zcnd 12639 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ∈ ℂ)
36 simprrl 780 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ≠ 0)
37 simprrr 781 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ≠ 0)
3834, 35, 36, 37mulne0d 11830 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑥 · 𝑧) ≠ 0)
3914adantrr 717 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℕ)
4022adantrr 717 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℕ)
4139, 40nnmulcld 12239 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑦 · 𝑤) ∈ ℕ)
42 pcdiv 16823 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((𝑥 · 𝑧) ∈ ℤ ∧ (𝑥 · 𝑧) ≠ 0) ∧ (𝑦 · 𝑤) ∈ ℕ) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))))
4330, 33, 38, 41, 42syl121anc 1377 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))))
44 pcmul 16822 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑥 · 𝑧)) = ((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)))
4530, 31, 36, 32, 37, 44syl122anc 1381 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑥 · 𝑧)) = ((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)))
4639nnzd 12556 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℤ)
4716adantrr 717 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ≠ 0)
4840nnzd 12556 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℤ)
4924adantrr 717 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ≠ 0)
50 pcmul 16822 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℤ ∧ 𝑤 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑤)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤)))
5130, 46, 47, 48, 49, 50syl122anc 1381 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑦 · 𝑤)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤)))
5245, 51oveq12d 7405 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))) = (((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)) − ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤))))
53 pczcl 16819 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℕ0)
5430, 31, 36, 53syl12anc 836 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑥) ∈ ℕ0)
5554nn0cnd 12505 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑥) ∈ ℂ)
56 pczcl 16819 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℕ0)
5730, 32, 37, 56syl12anc 836 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑧) ∈ ℕ0)
5857nn0cnd 12505 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑧) ∈ ℂ)
5930, 39pccld 16821 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑦) ∈ ℕ0)
6059nn0cnd 12505 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑦) ∈ ℂ)
6130, 40pccld 16821 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑤) ∈ ℕ0)
6261nn0cnd 12505 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑤) ∈ ℂ)
6355, 58, 60, 62addsub4d 11580 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)) − ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
6443, 52, 633eqtrd 2768 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
6515adantrr 717 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℂ)
6623adantrr 717 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℂ)
6734, 65, 35, 66, 47, 49divmuldivd 11999 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑥 / 𝑦) · (𝑧 / 𝑤)) = ((𝑥 · 𝑧) / (𝑦 · 𝑤)))
6867oveq2d 7403 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))))
69 pcdiv 16823 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
7030, 31, 36, 39, 69syl121anc 1377 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
71 pcdiv 16823 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0) ∧ 𝑤 ∈ ℕ) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
7230, 32, 37, 40, 71syl121anc 1377 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
7370, 72oveq12d 7405 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
7464, 68, 733eqtr4d 2774 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))
7574expr 456 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 ≠ 0 ∧ 𝑧 ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
7621, 29, 75syl2and 608 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
77 neeq1 2987 . . . . . . . . . . 11 (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
78 neeq1 2987 . . . . . . . . . . 11 (𝐵 = (𝑧 / 𝑤) → (𝐵 ≠ 0 ↔ (𝑧 / 𝑤) ≠ 0))
7977, 78bi2anan9 638 . . . . . . . . . 10 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0)))
80 oveq12 7396 . . . . . . . . . . . 12 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 · 𝐵) = ((𝑥 / 𝑦) · (𝑧 / 𝑤)))
8180oveq2d 7403 . . . . . . . . . . 11 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))))
82 oveq2 7395 . . . . . . . . . . . 12 (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦)))
83 oveq2 7395 . . . . . . . . . . . 12 (𝐵 = (𝑧 / 𝑤) → (𝑃 pCnt 𝐵) = (𝑃 pCnt (𝑧 / 𝑤)))
8482, 83oveqan12d 7406 . . . . . . . . . . 11 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))
8581, 84eqeq12d 2745 . . . . . . . . . 10 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) ↔ (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
8679, 85imbi12d 344 . . . . . . . . 9 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) ↔ (((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))))
8776, 86syl5ibrcom 247 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))))
8813, 87sylanl1 680 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))))
8912, 88mpid 44 . . . . . 6 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
9089rexlimdvva 3194 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
918, 90biimtrrid 243 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
9291rexlimdvva 3194 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
937, 92biimtrrid 243 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
943, 6, 93mp2and 699 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  (class class class)co 7387  cc 11066  0cc0 11068   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cq 12907  cprime 16641   pCnt cpc 16807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808
This theorem is referenced by:  pcqdiv  16828  pcexp  16830  pcaddlem  16859  sylow1lem1  19528  padicabv  27541
  Copyright terms: Public domain W3C validator