MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcqmul Structured version   Visualization version   GIF version

Theorem pcqmul 16891
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
pcqmul ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))

Proof of Theorem pcqmul
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1200 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℚ)
2 elq 12992 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
31, 2sylib 218 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
4 simp3l 1202 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℚ)
5 elq 12992 . . 3 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
64, 5sylib 218 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
7 reeanv 3229 . . 3 (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
8 reeanv 3229 . . . . 5 (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
9 simp2r 1201 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
10 simp3r 1203 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
119, 10jca 511 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0))
1211ad2antrr 726 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0))
13 simp1 1137 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℙ)
14 simprl 771 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ∈ ℕ)
1514nncnd 12282 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ∈ ℂ)
1614nnne0d 12316 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ≠ 0)
1715, 16div0d 12042 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (0 / 𝑦) = 0)
18 oveq1 7438 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
1918eqeq1d 2739 . . . . . . . . . . . 12 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
2017, 19syl5ibrcom 247 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
2120necon3d 2961 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0))
22 simprr 773 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℕ)
2322nncnd 12282 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℂ)
2422nnne0d 12316 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ≠ 0)
2523, 24div0d 12042 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (0 / 𝑤) = 0)
26 oveq1 7438 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧 / 𝑤) = (0 / 𝑤))
2726eqeq1d 2739 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧 / 𝑤) = 0 ↔ (0 / 𝑤) = 0))
2825, 27syl5ibrcom 247 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑧 = 0 → (𝑧 / 𝑤) = 0))
2928necon3d 2961 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑧 / 𝑤) ≠ 0 → 𝑧 ≠ 0))
30 simpll 767 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑃 ∈ ℙ)
31 simplrl 777 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ∈ ℤ)
32 simplrr 778 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ∈ ℤ)
3331, 32zmulcld 12728 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑥 · 𝑧) ∈ ℤ)
3431zcnd 12723 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ∈ ℂ)
3532zcnd 12723 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ∈ ℂ)
36 simprrl 781 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ≠ 0)
37 simprrr 782 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ≠ 0)
3834, 35, 36, 37mulne0d 11915 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑥 · 𝑧) ≠ 0)
3914adantrr 717 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℕ)
4022adantrr 717 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℕ)
4139, 40nnmulcld 12319 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑦 · 𝑤) ∈ ℕ)
42 pcdiv 16890 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((𝑥 · 𝑧) ∈ ℤ ∧ (𝑥 · 𝑧) ≠ 0) ∧ (𝑦 · 𝑤) ∈ ℕ) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))))
4330, 33, 38, 41, 42syl121anc 1377 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))))
44 pcmul 16889 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑥 · 𝑧)) = ((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)))
4530, 31, 36, 32, 37, 44syl122anc 1381 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑥 · 𝑧)) = ((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)))
4639nnzd 12640 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℤ)
4716adantrr 717 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ≠ 0)
4840nnzd 12640 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℤ)
4924adantrr 717 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ≠ 0)
50 pcmul 16889 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℤ ∧ 𝑤 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑤)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤)))
5130, 46, 47, 48, 49, 50syl122anc 1381 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑦 · 𝑤)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤)))
5245, 51oveq12d 7449 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))) = (((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)) − ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤))))
53 pczcl 16886 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℕ0)
5430, 31, 36, 53syl12anc 837 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑥) ∈ ℕ0)
5554nn0cnd 12589 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑥) ∈ ℂ)
56 pczcl 16886 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℕ0)
5730, 32, 37, 56syl12anc 837 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑧) ∈ ℕ0)
5857nn0cnd 12589 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑧) ∈ ℂ)
5930, 39pccld 16888 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑦) ∈ ℕ0)
6059nn0cnd 12589 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑦) ∈ ℂ)
6130, 40pccld 16888 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑤) ∈ ℕ0)
6261nn0cnd 12589 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑤) ∈ ℂ)
6355, 58, 60, 62addsub4d 11667 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)) − ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
6443, 52, 633eqtrd 2781 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
6515adantrr 717 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℂ)
6623adantrr 717 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℂ)
6734, 65, 35, 66, 47, 49divmuldivd 12084 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑥 / 𝑦) · (𝑧 / 𝑤)) = ((𝑥 · 𝑧) / (𝑦 · 𝑤)))
6867oveq2d 7447 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))))
69 pcdiv 16890 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
7030, 31, 36, 39, 69syl121anc 1377 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
71 pcdiv 16890 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0) ∧ 𝑤 ∈ ℕ) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
7230, 32, 37, 40, 71syl121anc 1377 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
7370, 72oveq12d 7449 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
7464, 68, 733eqtr4d 2787 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))
7574expr 456 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 ≠ 0 ∧ 𝑧 ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
7621, 29, 75syl2and 608 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
77 neeq1 3003 . . . . . . . . . . 11 (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
78 neeq1 3003 . . . . . . . . . . 11 (𝐵 = (𝑧 / 𝑤) → (𝐵 ≠ 0 ↔ (𝑧 / 𝑤) ≠ 0))
7977, 78bi2anan9 638 . . . . . . . . . 10 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0)))
80 oveq12 7440 . . . . . . . . . . . 12 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 · 𝐵) = ((𝑥 / 𝑦) · (𝑧 / 𝑤)))
8180oveq2d 7447 . . . . . . . . . . 11 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))))
82 oveq2 7439 . . . . . . . . . . . 12 (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦)))
83 oveq2 7439 . . . . . . . . . . . 12 (𝐵 = (𝑧 / 𝑤) → (𝑃 pCnt 𝐵) = (𝑃 pCnt (𝑧 / 𝑤)))
8482, 83oveqan12d 7450 . . . . . . . . . . 11 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))
8581, 84eqeq12d 2753 . . . . . . . . . 10 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) ↔ (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
8679, 85imbi12d 344 . . . . . . . . 9 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) ↔ (((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))))
8776, 86syl5ibrcom 247 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))))
8813, 87sylanl1 680 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))))
8912, 88mpid 44 . . . . . 6 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
9089rexlimdvva 3213 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
918, 90biimtrrid 243 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
9291rexlimdvva 3213 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
937, 92biimtrrid 243 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
943, 6, 93mp2and 699 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  (class class class)co 7431  cc 11153  0cc0 11155   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  cq 12990  cprime 16708   pCnt cpc 16874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875
This theorem is referenced by:  pcqdiv  16895  pcexp  16897  pcaddlem  16926  sylow1lem1  19616  padicabv  27674
  Copyright terms: Public domain W3C validator