| Step | Hyp | Ref
| Expression |
| 1 | | simp2l 1200 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ∈
ℚ) |
| 2 | | elq 12992 |
. . 3
⊢ (𝐴 ∈ ℚ ↔
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝐴 = (𝑥 / 𝑦)) |
| 3 | 1, 2 | sylib 218 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
| 4 | | simp3l 1202 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ∈
ℚ) |
| 5 | | elq 12992 |
. . 3
⊢ (𝐵 ∈ ℚ ↔
∃𝑧 ∈ ℤ
∃𝑤 ∈ ℕ
𝐵 = (𝑧 / 𝑤)) |
| 6 | 4, 5 | sylib 218 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) |
| 7 | | reeanv 3229 |
. . 3
⊢
(∃𝑥 ∈
ℤ ∃𝑧 ∈
ℤ (∃𝑦 ∈
ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))) |
| 8 | | reeanv 3229 |
. . . . 5
⊢
(∃𝑦 ∈
ℕ ∃𝑤 ∈
ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))) |
| 9 | | simp2r 1201 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0) |
| 10 | | simp3r 1203 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0) |
| 11 | 9, 10 | jca 511 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) |
| 12 | 11 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) |
| 13 | | simp1 1137 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝑃 ∈
ℙ) |
| 14 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ∈
ℕ) |
| 15 | 14 | nncnd 12282 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ∈
ℂ) |
| 16 | 14 | nnne0d 12316 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ≠ 0) |
| 17 | 15, 16 | div0d 12042 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (0 /
𝑦) = 0) |
| 18 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦)) |
| 19 | 18 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0)) |
| 20 | 17, 19 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 = 0 → (𝑥 / 𝑦) = 0)) |
| 21 | 20 | necon3d 2961 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0)) |
| 22 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈
ℕ) |
| 23 | 22 | nncnd 12282 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈
ℂ) |
| 24 | 22 | nnne0d 12316 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ≠ 0) |
| 25 | 23, 24 | div0d 12042 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (0 /
𝑤) = 0) |
| 26 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 0 → (𝑧 / 𝑤) = (0 / 𝑤)) |
| 27 | 26 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ (𝑧 = 0 → ((𝑧 / 𝑤) = 0 ↔ (0 / 𝑤) = 0)) |
| 28 | 25, 27 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑧 = 0 → (𝑧 / 𝑤) = 0)) |
| 29 | 28 | necon3d 2961 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑧 / 𝑤) ≠ 0 → 𝑧 ≠ 0)) |
| 30 | | simpll 767 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑃 ∈ ℙ) |
| 31 | | simplrl 777 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ∈ ℤ) |
| 32 | | simplrr 778 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ∈ ℤ) |
| 33 | 31, 32 | zmulcld 12728 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑥 · 𝑧) ∈ ℤ) |
| 34 | 31 | zcnd 12723 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ∈ ℂ) |
| 35 | 32 | zcnd 12723 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ∈ ℂ) |
| 36 | | simprrl 781 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ≠ 0) |
| 37 | | simprrr 782 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ≠ 0) |
| 38 | 34, 35, 36, 37 | mulne0d 11915 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑥 · 𝑧) ≠ 0) |
| 39 | 14 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℕ) |
| 40 | 22 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℕ) |
| 41 | 39, 40 | nnmulcld 12319 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑦 · 𝑤) ∈ ℕ) |
| 42 | | pcdiv 16890 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ ((𝑥 · 𝑧) ∈ ℤ ∧ (𝑥 · 𝑧) ≠ 0) ∧ (𝑦 · 𝑤) ∈ ℕ) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤)))) |
| 43 | 30, 33, 38, 41, 42 | syl121anc 1377 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤)))) |
| 44 | | pcmul 16889 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑥 · 𝑧)) = ((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧))) |
| 45 | 30, 31, 36, 32, 37, 44 | syl122anc 1381 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑥 · 𝑧)) = ((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧))) |
| 46 | 39 | nnzd 12640 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℤ) |
| 47 | 16 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ≠ 0) |
| 48 | 40 | nnzd 12640 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℤ) |
| 49 | 24 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ≠ 0) |
| 50 | | pcmul 16889 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℤ ∧ 𝑤 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑤)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤))) |
| 51 | 30, 46, 47, 48, 49, 50 | syl122anc 1381 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑦 · 𝑤)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤))) |
| 52 | 45, 51 | oveq12d 7449 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))) = (((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)) − ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤)))) |
| 53 | | pczcl 16886 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈
ℕ0) |
| 54 | 30, 31, 36, 53 | syl12anc 837 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑥) ∈
ℕ0) |
| 55 | 54 | nn0cnd 12589 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑥) ∈ ℂ) |
| 56 | | pczcl 16886 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈
ℕ0) |
| 57 | 30, 32, 37, 56 | syl12anc 837 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑧) ∈
ℕ0) |
| 58 | 57 | nn0cnd 12589 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑧) ∈ ℂ) |
| 59 | 30, 39 | pccld 16888 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑦) ∈
ℕ0) |
| 60 | 59 | nn0cnd 12589 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑦) ∈ ℂ) |
| 61 | 30, 40 | pccld 16888 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑤) ∈
ℕ0) |
| 62 | 61 | nn0cnd 12589 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑤) ∈ ℂ) |
| 63 | 55, 58, 60, 62 | addsub4d 11667 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)) − ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))) |
| 64 | 43, 52, 63 | 3eqtrd 2781 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))) |
| 65 | 15 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℂ) |
| 66 | 23 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℂ) |
| 67 | 34, 65, 35, 66, 47, 49 | divmuldivd 12084 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑥 / 𝑦) · (𝑧 / 𝑤)) = ((𝑥 · 𝑧) / (𝑦 · 𝑤))) |
| 68 | 67 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤)))) |
| 69 | | pcdiv 16890 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) |
| 70 | 30, 31, 36, 39, 69 | syl121anc 1377 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) |
| 71 | | pcdiv 16890 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0) ∧ 𝑤 ∈ ℕ) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))) |
| 72 | 30, 32, 37, 40, 71 | syl121anc 1377 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))) |
| 73 | 70, 72 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))) |
| 74 | 64, 68, 73 | 3eqtr4d 2787 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))) |
| 75 | 74 | expr 456 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 ≠ 0 ∧ 𝑧 ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))) |
| 76 | 21, 29, 75 | syl2and 608 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) →
(((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))) |
| 77 | | neeq1 3003 |
. . . . . . . . . . 11
⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0)) |
| 78 | | neeq1 3003 |
. . . . . . . . . . 11
⊢ (𝐵 = (𝑧 / 𝑤) → (𝐵 ≠ 0 ↔ (𝑧 / 𝑤) ≠ 0)) |
| 79 | 77, 78 | bi2anan9 638 |
. . . . . . . . . 10
⊢ ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0))) |
| 80 | | oveq12 7440 |
. . . . . . . . . . . 12
⊢ ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 · 𝐵) = ((𝑥 / 𝑦) · (𝑧 / 𝑤))) |
| 81 | 80 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤)))) |
| 82 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦))) |
| 83 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝐵 = (𝑧 / 𝑤) → (𝑃 pCnt 𝐵) = (𝑃 pCnt (𝑧 / 𝑤))) |
| 84 | 82, 83 | oveqan12d 7450 |
. . . . . . . . . . 11
⊢ ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))) |
| 85 | 81, 84 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) ↔ (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))) |
| 86 | 79, 85 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) ↔ (((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))) |
| 87 | 76, 86 | syl5ibrcom 247 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))) |
| 88 | 13, 87 | sylanl1 680 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))) |
| 89 | 12, 88 | mpid 44 |
. . . . . 6
⊢ ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))) |
| 90 | 89 | rexlimdvva 3213 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) →
(∃𝑦 ∈ ℕ
∃𝑤 ∈ ℕ
(𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))) |
| 91 | 8, 90 | biimtrrid 243 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) →
((∃𝑦 ∈ ℕ
𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))) |
| 92 | 91 | rexlimdvva 3213 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))) |
| 93 | 7, 92 | biimtrrid 243 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))) |
| 94 | 3, 6, 93 | mp2and 699 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) |