MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcqmul Structured version   Visualization version   GIF version

Theorem pcqmul 16179
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
pcqmul ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))

Proof of Theorem pcqmul
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1196 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℚ)
2 elq 12338 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
31, 2sylib 221 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
4 simp3l 1198 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℚ)
5 elq 12338 . . 3 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
64, 5sylib 221 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
7 reeanv 3348 . . 3 (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
8 reeanv 3348 . . . . 5 (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
9 simp2r 1197 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
10 simp3r 1199 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
119, 10jca 515 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0))
1211ad2antrr 725 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0))
13 simp1 1133 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℙ)
14 simprl 770 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ∈ ℕ)
1514nncnd 11641 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ∈ ℂ)
1614nnne0d 11675 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ≠ 0)
1715, 16div0d 11404 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (0 / 𝑦) = 0)
18 oveq1 7147 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
1918eqeq1d 2824 . . . . . . . . . . . 12 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
2017, 19syl5ibrcom 250 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
2120necon3d 3032 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0))
22 simprr 772 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℕ)
2322nncnd 11641 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℂ)
2422nnne0d 11675 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ≠ 0)
2523, 24div0d 11404 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (0 / 𝑤) = 0)
26 oveq1 7147 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧 / 𝑤) = (0 / 𝑤))
2726eqeq1d 2824 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧 / 𝑤) = 0 ↔ (0 / 𝑤) = 0))
2825, 27syl5ibrcom 250 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑧 = 0 → (𝑧 / 𝑤) = 0))
2928necon3d 3032 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑧 / 𝑤) ≠ 0 → 𝑧 ≠ 0))
30 simpll 766 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑃 ∈ ℙ)
31 simplrl 776 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ∈ ℤ)
32 simplrr 777 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ∈ ℤ)
3331, 32zmulcld 12081 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑥 · 𝑧) ∈ ℤ)
3431zcnd 12076 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ∈ ℂ)
3532zcnd 12076 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ∈ ℂ)
36 simprrl 780 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ≠ 0)
37 simprrr 781 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ≠ 0)
3834, 35, 36, 37mulne0d 11281 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑥 · 𝑧) ≠ 0)
3914adantrr 716 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℕ)
4022adantrr 716 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℕ)
4139, 40nnmulcld 11678 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑦 · 𝑤) ∈ ℕ)
42 pcdiv 16178 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((𝑥 · 𝑧) ∈ ℤ ∧ (𝑥 · 𝑧) ≠ 0) ∧ (𝑦 · 𝑤) ∈ ℕ) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))))
4330, 33, 38, 41, 42syl121anc 1372 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))))
44 pcmul 16177 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑥 · 𝑧)) = ((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)))
4530, 31, 36, 32, 37, 44syl122anc 1376 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑥 · 𝑧)) = ((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)))
4639nnzd 12074 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℤ)
4716adantrr 716 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ≠ 0)
4840nnzd 12074 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℤ)
4924adantrr 716 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ≠ 0)
50 pcmul 16177 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℤ ∧ 𝑤 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑤)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤)))
5130, 46, 47, 48, 49, 50syl122anc 1376 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑦 · 𝑤)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤)))
5245, 51oveq12d 7158 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))) = (((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)) − ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤))))
53 pczcl 16174 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℕ0)
5430, 31, 36, 53syl12anc 835 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑥) ∈ ℕ0)
5554nn0cnd 11945 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑥) ∈ ℂ)
56 pczcl 16174 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℕ0)
5730, 32, 37, 56syl12anc 835 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑧) ∈ ℕ0)
5857nn0cnd 11945 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑧) ∈ ℂ)
5930, 39pccld 16176 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑦) ∈ ℕ0)
6059nn0cnd 11945 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑦) ∈ ℂ)
6130, 40pccld 16176 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑤) ∈ ℕ0)
6261nn0cnd 11945 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑤) ∈ ℂ)
6355, 58, 60, 62addsub4d 11033 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)) − ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
6443, 52, 633eqtrd 2861 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
6515adantrr 716 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℂ)
6623adantrr 716 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℂ)
6734, 65, 35, 66, 47, 49divmuldivd 11446 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑥 / 𝑦) · (𝑧 / 𝑤)) = ((𝑥 · 𝑧) / (𝑦 · 𝑤)))
6867oveq2d 7156 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))))
69 pcdiv 16178 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
7030, 31, 36, 39, 69syl121anc 1372 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
71 pcdiv 16178 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0) ∧ 𝑤 ∈ ℕ) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
7230, 32, 37, 40, 71syl121anc 1372 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
7370, 72oveq12d 7158 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
7464, 68, 733eqtr4d 2867 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))
7574expr 460 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 ≠ 0 ∧ 𝑧 ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
7621, 29, 75syl2and 610 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
77 neeq1 3073 . . . . . . . . . . 11 (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
78 neeq1 3073 . . . . . . . . . . 11 (𝐵 = (𝑧 / 𝑤) → (𝐵 ≠ 0 ↔ (𝑧 / 𝑤) ≠ 0))
7977, 78bi2anan9 638 . . . . . . . . . 10 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0)))
80 oveq12 7149 . . . . . . . . . . . 12 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 · 𝐵) = ((𝑥 / 𝑦) · (𝑧 / 𝑤)))
8180oveq2d 7156 . . . . . . . . . . 11 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))))
82 oveq2 7148 . . . . . . . . . . . 12 (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦)))
83 oveq2 7148 . . . . . . . . . . . 12 (𝐵 = (𝑧 / 𝑤) → (𝑃 pCnt 𝐵) = (𝑃 pCnt (𝑧 / 𝑤)))
8482, 83oveqan12d 7159 . . . . . . . . . . 11 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))
8581, 84eqeq12d 2838 . . . . . . . . . 10 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) ↔ (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
8679, 85imbi12d 348 . . . . . . . . 9 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) ↔ (((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))))
8776, 86syl5ibrcom 250 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))))
8813, 87sylanl1 679 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))))
8912, 88mpid 44 . . . . . 6 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
9089rexlimdvva 3280 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
918, 90syl5bir 246 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
9291rexlimdvva 3280 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
937, 92syl5bir 246 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
943, 6, 93mp2and 698 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wrex 3131  (class class class)co 7140  cc 10524  0cc0 10526   + caddc 10529   · cmul 10531  cmin 10859   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  cq 12336  cprime 16004   pCnt cpc 16162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-dvds 15599  df-gcd 15833  df-prm 16005  df-pc 16163
This theorem is referenced by:  pcqdiv  16183  pcexp  16185  pcaddlem  16213  sylow1lem1  18714  padicabv  26212
  Copyright terms: Public domain W3C validator