MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcqmul Structured version   Visualization version   GIF version

Theorem pcqmul 16725
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
pcqmul ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))

Proof of Theorem pcqmul
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1199 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℚ)
2 elq 12875 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
31, 2sylib 217 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
4 simp3l 1201 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℚ)
5 elq 12875 . . 3 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
64, 5sylib 217 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
7 reeanv 3217 . . 3 (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
8 reeanv 3217 . . . . 5 (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
9 simp2r 1200 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
10 simp3r 1202 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
119, 10jca 512 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0))
1211ad2antrr 724 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0))
13 simp1 1136 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℙ)
14 simprl 769 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ∈ ℕ)
1514nncnd 12169 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ∈ ℂ)
1614nnne0d 12203 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑦 ≠ 0)
1715, 16div0d 11930 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (0 / 𝑦) = 0)
18 oveq1 7364 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
1918eqeq1d 2738 . . . . . . . . . . . 12 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
2017, 19syl5ibrcom 246 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
2120necon3d 2964 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0))
22 simprr 771 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℕ)
2322nncnd 12169 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℂ)
2422nnne0d 12203 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → 𝑤 ≠ 0)
2523, 24div0d 11930 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (0 / 𝑤) = 0)
26 oveq1 7364 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧 / 𝑤) = (0 / 𝑤))
2726eqeq1d 2738 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧 / 𝑤) = 0 ↔ (0 / 𝑤) = 0))
2825, 27syl5ibrcom 246 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑧 = 0 → (𝑧 / 𝑤) = 0))
2928necon3d 2964 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑧 / 𝑤) ≠ 0 → 𝑧 ≠ 0))
30 simpll 765 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑃 ∈ ℙ)
31 simplrl 775 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ∈ ℤ)
32 simplrr 776 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ∈ ℤ)
3331, 32zmulcld 12613 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑥 · 𝑧) ∈ ℤ)
3431zcnd 12608 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ∈ ℂ)
3532zcnd 12608 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ∈ ℂ)
36 simprrl 779 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑥 ≠ 0)
37 simprrr 780 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑧 ≠ 0)
3834, 35, 36, 37mulne0d 11807 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑥 · 𝑧) ≠ 0)
3914adantrr 715 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℕ)
4022adantrr 715 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℕ)
4139, 40nnmulcld 12206 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑦 · 𝑤) ∈ ℕ)
42 pcdiv 16724 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((𝑥 · 𝑧) ∈ ℤ ∧ (𝑥 · 𝑧) ≠ 0) ∧ (𝑦 · 𝑤) ∈ ℕ) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))))
4330, 33, 38, 41, 42syl121anc 1375 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))))
44 pcmul 16723 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑥 · 𝑧)) = ((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)))
4530, 31, 36, 32, 37, 44syl122anc 1379 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑥 · 𝑧)) = ((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)))
4639nnzd 12526 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℤ)
4716adantrr 715 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ≠ 0)
4840nnzd 12526 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℤ)
4924adantrr 715 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ≠ 0)
50 pcmul 16723 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℤ ∧ 𝑤 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑤)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤)))
5130, 46, 47, 48, 49, 50syl122anc 1379 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑦 · 𝑤)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤)))
5245, 51oveq12d 7375 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑃 pCnt (𝑥 · 𝑧)) − (𝑃 pCnt (𝑦 · 𝑤))) = (((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)) − ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤))))
53 pczcl 16720 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℕ0)
5430, 31, 36, 53syl12anc 835 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑥) ∈ ℕ0)
5554nn0cnd 12475 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑥) ∈ ℂ)
56 pczcl 16720 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℕ0)
5730, 32, 37, 56syl12anc 835 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑧) ∈ ℕ0)
5857nn0cnd 12475 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑧) ∈ ℂ)
5930, 39pccld 16722 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑦) ∈ ℕ0)
6059nn0cnd 12475 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑦) ∈ ℂ)
6130, 40pccld 16722 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑤) ∈ ℕ0)
6261nn0cnd 12475 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt 𝑤) ∈ ℂ)
6355, 58, 60, 62addsub4d 11559 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (((𝑃 pCnt 𝑥) + (𝑃 pCnt 𝑧)) − ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
6443, 52, 633eqtrd 2780 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
6515adantrr 715 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑦 ∈ ℂ)
6623adantrr 715 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → 𝑤 ∈ ℂ)
6734, 65, 35, 66, 47, 49divmuldivd 11972 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑥 / 𝑦) · (𝑧 / 𝑤)) = ((𝑥 · 𝑧) / (𝑦 · 𝑤)))
6867oveq2d 7373 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = (𝑃 pCnt ((𝑥 · 𝑧) / (𝑦 · 𝑤))))
69 pcdiv 16724 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
7030, 31, 36, 39, 69syl121anc 1375 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
71 pcdiv 16724 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0) ∧ 𝑤 ∈ ℕ) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
7230, 32, 37, 40, 71syl121anc 1375 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
7370, 72oveq12d 7375 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))) = (((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) + ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
7464, 68, 733eqtr4d 2786 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑧 ≠ 0))) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))
7574expr 457 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 ≠ 0 ∧ 𝑧 ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
7621, 29, 75syl2and 608 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
77 neeq1 3006 . . . . . . . . . . 11 (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
78 neeq1 3006 . . . . . . . . . . 11 (𝐵 = (𝑧 / 𝑤) → (𝐵 ≠ 0 ↔ (𝑧 / 𝑤) ≠ 0))
7977, 78bi2anan9 637 . . . . . . . . . 10 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0)))
80 oveq12 7366 . . . . . . . . . . . 12 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 · 𝐵) = ((𝑥 / 𝑦) · (𝑧 / 𝑤)))
8180oveq2d 7373 . . . . . . . . . . 11 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))))
82 oveq2 7365 . . . . . . . . . . . 12 (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦)))
83 oveq2 7365 . . . . . . . . . . . 12 (𝐵 = (𝑧 / 𝑤) → (𝑃 pCnt 𝐵) = (𝑃 pCnt (𝑧 / 𝑤)))
8482, 83oveqan12d 7376 . . . . . . . . . . 11 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))
8581, 84eqeq12d 2752 . . . . . . . . . 10 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) ↔ (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤)))))
8679, 85imbi12d 344 . . . . . . . . 9 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) ↔ (((𝑥 / 𝑦) ≠ 0 ∧ (𝑧 / 𝑤) ≠ 0) → (𝑃 pCnt ((𝑥 / 𝑦) · (𝑧 / 𝑤))) = ((𝑃 pCnt (𝑥 / 𝑦)) + (𝑃 pCnt (𝑧 / 𝑤))))))
8776, 86syl5ibrcom 246 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))))
8813, 87sylanl1 678 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))))
8912, 88mpid 44 . . . . . 6 ((((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
9089rexlimdvva 3205 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
918, 90biimtrrid 242 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
9291rexlimdvva 3205 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
937, 92biimtrrid 242 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))))
943, 6, 93mp2and 697 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  (class class class)co 7357  cc 11049  0cc0 11051   + caddc 11054   · cmul 11056  cmin 11385   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  cq 12873  cprime 16547   pCnt cpc 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709
This theorem is referenced by:  pcqdiv  16729  pcexp  16731  pcaddlem  16760  sylow1lem1  19380  padicabv  26978
  Copyright terms: Public domain W3C validator