![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sqlem8a | Structured version Visualization version GIF version |
Description: Lemma for 2sqlem8 27314. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
2sqlem7.2 | ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} |
2sqlem9.5 | ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
2sqlem9.7 | ⊢ (𝜑 → 𝑀 ∥ 𝑁) |
2sqlem8.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
2sqlem8.m | ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) |
2sqlem8.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
2sqlem8.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
2sqlem8.3 | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
2sqlem8.4 | ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) |
2sqlem8.c | ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
2sqlem8.d | ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
2sqlem8a | ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqlem8.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 2sqlem8.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) | |
3 | eluz2b3 12910 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) |
5 | 4 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
6 | 2sqlem8.c | . . . 4 ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
7 | 1, 5, 6 | 4sqlem5 16884 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴 − 𝐶) / 𝑀) ∈ ℤ)) |
8 | 7 | simpld 494 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
9 | 2sqlem8.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
10 | 2sqlem8.d | . . . 4 ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
11 | 9, 5, 10 | 4sqlem5 16884 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵 − 𝐷) / 𝑀) ∈ ℤ)) |
12 | 11 | simpld 494 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℤ) |
13 | 4 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 1) |
14 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐶↑2) = 0) → (𝐶↑2) = 0) | |
15 | 1, 5, 6, 14 | 4sqlem9 16888 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐶↑2) = 0) → (𝑀↑2) ∥ (𝐴↑2)) |
16 | 15 | ex 412 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶↑2) = 0 → (𝑀↑2) ∥ (𝐴↑2))) |
17 | eluzelz 12836 | . . . . . . . . . 10 ⊢ (𝑀 ∈ (ℤ≥‘2) → 𝑀 ∈ ℤ) | |
18 | 2, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
19 | dvdssq 16511 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) | |
20 | 18, 1, 19 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) |
21 | 16, 20 | sylibrd 259 | . . . . . . 7 ⊢ (𝜑 → ((𝐶↑2) = 0 → 𝑀 ∥ 𝐴)) |
22 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐷↑2) = 0) → (𝐷↑2) = 0) | |
23 | 9, 5, 10, 22 | 4sqlem9 16888 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐷↑2) = 0) → (𝑀↑2) ∥ (𝐵↑2)) |
24 | 23 | ex 412 | . . . . . . . 8 ⊢ (𝜑 → ((𝐷↑2) = 0 → (𝑀↑2) ∥ (𝐵↑2))) |
25 | dvdssq 16511 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑀 ∥ 𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2))) | |
26 | 18, 9, 25 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∥ 𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2))) |
27 | 24, 26 | sylibrd 259 | . . . . . . 7 ⊢ (𝜑 → ((𝐷↑2) = 0 → 𝑀 ∥ 𝐵)) |
28 | 2sqlem8.3 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
29 | ax-1ne0 11181 | . . . . . . . . . . . 12 ⊢ 1 ≠ 0 | |
30 | 29 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → 1 ≠ 0) |
31 | 28, 30 | eqnetrd 3002 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 gcd 𝐵) ≠ 0) |
32 | 31 | neneqd 2939 | . . . . . . . . 9 ⊢ (𝜑 → ¬ (𝐴 gcd 𝐵) = 0) |
33 | gcdeq0 16465 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | |
34 | 1, 9, 33 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
35 | 32, 34 | mtbid 324 | . . . . . . . 8 ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
36 | dvdslegcd 16452 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝑀 ∥ 𝐴 ∧ 𝑀 ∥ 𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵))) | |
37 | 18, 1, 9, 35, 36 | syl31anc 1370 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 ∥ 𝐴 ∧ 𝑀 ∥ 𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵))) |
38 | 21, 27, 37 | syl2and 607 | . . . . . 6 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 ≤ (𝐴 gcd 𝐵))) |
39 | 28 | breq2d 5153 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 ≤ 1)) |
40 | nnle1eq1 12246 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀 ≤ 1 ↔ 𝑀 = 1)) | |
41 | 5, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ 1 ↔ 𝑀 = 1)) |
42 | 39, 41 | bitrd 279 | . . . . . 6 ⊢ (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 = 1)) |
43 | 38, 42 | sylibd 238 | . . . . 5 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 = 1)) |
44 | 43 | necon3ad 2947 | . . . 4 ⊢ (𝜑 → (𝑀 ≠ 1 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0))) |
45 | 13, 44 | mpd 15 | . . 3 ⊢ (𝜑 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0)) |
46 | 8 | zcnd 12671 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
47 | sqeq0 14090 | . . . . 5 ⊢ (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) | |
48 | 46, 47 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) |
49 | 12 | zcnd 12671 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
50 | sqeq0 14090 | . . . . 5 ⊢ (𝐷 ∈ ℂ → ((𝐷↑2) = 0 ↔ 𝐷 = 0)) | |
51 | 49, 50 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐷↑2) = 0 ↔ 𝐷 = 0)) |
52 | 48, 51 | anbi12d 630 | . . 3 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) ↔ (𝐶 = 0 ∧ 𝐷 = 0))) |
53 | 45, 52 | mtbid 324 | . 2 ⊢ (𝜑 → ¬ (𝐶 = 0 ∧ 𝐷 = 0)) |
54 | gcdn0cl 16450 | . 2 ⊢ (((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝐷 = 0)) → (𝐶 gcd 𝐷) ∈ ℕ) | |
55 | 8, 12, 53, 54 | syl21anc 835 | 1 ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2703 ≠ wne 2934 ∀wral 3055 ∃wrex 3064 class class class wbr 5141 ↦ cmpt 5224 ran crn 5670 ‘cfv 6537 (class class class)co 7405 ℂcc 11110 0cc0 11112 1c1 11113 + caddc 11115 ≤ cle 11253 − cmin 11448 / cdiv 11875 ℕcn 12216 2c2 12271 ℤcz 12562 ℤ≥cuz 12826 ...cfz 13490 mod cmo 13840 ↑cexp 14032 abscabs 15187 ∥ cdvds 16204 gcd cgcd 16442 ℤ[i]cgz 16871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-dvds 16205 df-gcd 16443 |
This theorem is referenced by: 2sqlem8 27314 |
Copyright terms: Public domain | W3C validator |