Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac2lem Structured version   Visualization version   GIF version

Theorem fmtnofac2lem 47555
Description: Lemma for fmtnofac2 47556 (Induction step). (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtnofac2lem ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
Distinct variable group:   𝑘,𝑁,𝑦,𝑧

Proof of Theorem fmtnofac2lem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12888 . . . . . 6 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
21adantr 480 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑦 ∈ ℤ)
3 eluzelz 12888 . . . . . 6 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
43adantl 481 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℤ)
5 eluzge2nn0 12929 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
6 fmtnonn 47518 . . . . . . 7 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
76nnzd 12640 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
85, 7syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) ∈ ℤ)
9 muldvds2 16319 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑧 ∥ (FermatNo‘𝑁)))
102, 4, 8, 9syl2an3an 1424 . . . 4 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑧 ∥ (FermatNo‘𝑁)))
11 muldvds1 16318 . . . . . 6 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑦 ∥ (FermatNo‘𝑁)))
122, 4, 8, 11syl2an3an 1424 . . . . 5 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑦 ∥ (FermatNo‘𝑁)))
13 pm2.27 42 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1413ad2ant2lr 748 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
15 pm2.27 42 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1615ad2ant2l 746 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
17 oveq1 7438 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝑘 · (2↑(𝑁 + 2))) = (𝑚 · (2↑(𝑁 + 2))))
1817oveq1d 7446 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((𝑚 · (2↑(𝑁 + 2))) + 1))
1918eqeq2d 2748 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)))
2019cbvrexvw 3238 . . . . . . . . . 10 (∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑚 ∈ ℕ0 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1))
21 oveq1 7438 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝑘 · (2↑(𝑁 + 2))) = (𝑛 · (2↑(𝑁 + 2))))
2221oveq1d 7446 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((𝑛 · (2↑(𝑁 + 2))) + 1))
2322eqeq2d 2748 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1)))
2423cbvrexvw 3238 . . . . . . . . . . . . 13 (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑛 ∈ ℕ0 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
25 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℕ0)
2625adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
27 2nn0 12543 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℕ0
2827a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
295, 28nn0addcld 12591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
3028, 29nn0expcld 14285 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ0)
3130adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (2↑(𝑁 + 2)) ∈ ℕ0)
3226, 31nn0mulcld 12592 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℕ0)
33 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3433adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
3532, 34nn0mulcld 12592 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℕ0)
36 nn0addcl 12561 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑚 + 𝑛) ∈ ℕ0)
3736adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 + 𝑛) ∈ ℕ0)
3835, 37nn0addcld 12591 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) ∈ ℕ0)
39 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → (𝑘 · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))))
4039oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → ((𝑘 · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
4140eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → ((((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1)))
4241adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛))) → ((((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1)))
43 eqidd 2738 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
4438, 42, 43rspcedvd 3624 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
45 nn0cn 12536 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
4645adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℂ)
4746adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℂ)
4830nn0cnd 12589 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
4948adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (2↑(𝑁 + 2)) ∈ ℂ)
5047, 49mulcld 11281 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℂ)
5133nn0cnd 12589 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
5251adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℂ)
5352, 49mulcld 11281 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ)
5450, 53jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ))
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ))
56 muladd11r 11474 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1))
5755, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1))
5825nn0cnd 12589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℂ)
5958adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℂ)
6059, 52, 493jca 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
6160adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
62 adddir 11252 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ) → ((𝑚 + 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))))
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 + 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))))
6463eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))) = ((𝑚 + 𝑛) · (2↑(𝑁 + 2))))
6564oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
6650adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℂ)
6752adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈ ℂ)
6849adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (2↑(𝑁 + 2)) ∈ ℂ)
6966, 67, 68mulassd 11284 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))))
7069eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))))
7170oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))))
7250, 52mulcld 11281 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ)
7336nn0cnd 12589 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑚 + 𝑛) ∈ ℂ)
7473adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 + 𝑛) ∈ ℂ)
7572, 74, 493jca 1129 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
7675adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
77 adddir 11252 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
7965, 71, 783eqtr4d 2787 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))))
8079oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
8157, 80eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
8281eqeq1d 2739 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8382rexbidva 3177 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8444, 83mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
8584adantll 714 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
86 oveq12 7440 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) ∧ 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑦 · 𝑧) = (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)))
8786ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → (𝑦 · 𝑧) = (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)))
8887eqeq1d 2739 . . . . . . . . . . . . . . . . . 18 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → ((𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8988rexbidv 3179 . . . . . . . . . . . . . . . . 17 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → (∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9085, 89syl5ibrcom 247 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9190expd 415 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9291anassrs 467 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9392rexlimdva 3155 . . . . . . . . . . . . 13 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (∃𝑛 ∈ ℕ0 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9424, 93biimtrid 242 . . . . . . . . . . . 12 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9594com23 86 . . . . . . . . . . 11 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9695rexlimdva 3155 . . . . . . . . . 10 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (∃𝑚 ∈ ℕ0 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9720, 96biimtrid 242 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9897impd 410 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ∧ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9998adantr 480 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → ((∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ∧ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
10014, 16, 99syl2and 608 . . . . . 6 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
101100exp32 420 . . . . 5 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑦 ∥ (FermatNo‘𝑁) → (𝑧 ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))))
10212, 101syld 47 . . . 4 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → (𝑧 ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))))
10310, 102mpdd 43 . . 3 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
104103expimpd 453 . 2 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
105104com23 86 1 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  1c1 11156   + caddc 11158   · cmul 11160  2c2 12321  0cn0 12526  cz 12613  cuz 12878  cexp 14102  cdvds 16290  FermatNocfmtno 47514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-dvds 16291  df-fmtno 47515
This theorem is referenced by:  fmtnofac2  47556
  Copyright terms: Public domain W3C validator