Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac2lem Structured version   Visualization version   GIF version

Theorem fmtnofac2lem 44908
Description: Lemma for fmtnofac2 44909 (Induction step). (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtnofac2lem ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
Distinct variable group:   𝑘,𝑁,𝑦,𝑧

Proof of Theorem fmtnofac2lem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12521 . . . . . 6 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
21adantr 480 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑦 ∈ ℤ)
3 eluzelz 12521 . . . . . 6 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
43adantl 481 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℤ)
5 eluzge2nn0 12556 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
6 fmtnonn 44871 . . . . . . 7 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
76nnzd 12354 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
85, 7syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) ∈ ℤ)
9 muldvds2 15919 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑧 ∥ (FermatNo‘𝑁)))
102, 4, 8, 9syl2an3an 1420 . . . 4 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑧 ∥ (FermatNo‘𝑁)))
11 muldvds1 15918 . . . . . 6 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑦 ∥ (FermatNo‘𝑁)))
122, 4, 8, 11syl2an3an 1420 . . . . 5 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑦 ∥ (FermatNo‘𝑁)))
13 pm2.27 42 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1413ad2ant2lr 744 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
15 pm2.27 42 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1615ad2ant2l 742 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
17 oveq1 7262 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝑘 · (2↑(𝑁 + 2))) = (𝑚 · (2↑(𝑁 + 2))))
1817oveq1d 7270 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((𝑚 · (2↑(𝑁 + 2))) + 1))
1918eqeq2d 2749 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)))
2019cbvrexvw 3373 . . . . . . . . . 10 (∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑚 ∈ ℕ0 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1))
21 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝑘 · (2↑(𝑁 + 2))) = (𝑛 · (2↑(𝑁 + 2))))
2221oveq1d 7270 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((𝑛 · (2↑(𝑁 + 2))) + 1))
2322eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1)))
2423cbvrexvw 3373 . . . . . . . . . . . . 13 (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑛 ∈ ℕ0 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
25 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℕ0)
2625adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
27 2nn0 12180 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℕ0
2827a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
295, 28nn0addcld 12227 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
3028, 29nn0expcld 13889 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ0)
3130adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (2↑(𝑁 + 2)) ∈ ℕ0)
3226, 31nn0mulcld 12228 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℕ0)
33 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3433adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
3532, 34nn0mulcld 12228 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℕ0)
36 nn0addcl 12198 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑚 + 𝑛) ∈ ℕ0)
3736adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 + 𝑛) ∈ ℕ0)
3835, 37nn0addcld 12227 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) ∈ ℕ0)
39 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → (𝑘 · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))))
4039oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → ((𝑘 · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
4140eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → ((((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1)))
4241adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛))) → ((((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1)))
43 eqidd 2739 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
4438, 42, 43rspcedvd 3555 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
45 nn0cn 12173 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
4645adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℂ)
4746adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℂ)
4830nn0cnd 12225 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
4948adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (2↑(𝑁 + 2)) ∈ ℂ)
5047, 49mulcld 10926 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℂ)
5133nn0cnd 12225 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
5251adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℂ)
5352, 49mulcld 10926 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ)
5450, 53jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ))
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ))
56 muladd11r 11118 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1))
5755, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1))
5825nn0cnd 12225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℂ)
5958adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℂ)
6059, 52, 493jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
6160adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
62 adddir 10897 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ) → ((𝑚 + 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))))
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 + 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))))
6463eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))) = ((𝑚 + 𝑛) · (2↑(𝑁 + 2))))
6564oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
6650adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℂ)
6752adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈ ℂ)
6849adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (2↑(𝑁 + 2)) ∈ ℂ)
6966, 67, 68mulassd 10929 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))))
7069eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))))
7170oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))))
7250, 52mulcld 10926 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ)
7336nn0cnd 12225 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑚 + 𝑛) ∈ ℂ)
7473adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 + 𝑛) ∈ ℂ)
7572, 74, 493jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
7675adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
77 adddir 10897 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
7965, 71, 783eqtr4d 2788 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))))
8079oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
8157, 80eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
8281eqeq1d 2740 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8382rexbidva 3224 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8444, 83mpbird 256 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
8584adantll 710 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
86 oveq12 7264 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) ∧ 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑦 · 𝑧) = (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)))
8786ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → (𝑦 · 𝑧) = (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)))
8887eqeq1d 2740 . . . . . . . . . . . . . . . . . 18 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → ((𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8988rexbidv 3225 . . . . . . . . . . . . . . . . 17 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → (∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9085, 89syl5ibrcom 246 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9190expd 415 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9291anassrs 467 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9392rexlimdva 3212 . . . . . . . . . . . . 13 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (∃𝑛 ∈ ℕ0 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9424, 93syl5bi 241 . . . . . . . . . . . 12 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9594com23 86 . . . . . . . . . . 11 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9695rexlimdva 3212 . . . . . . . . . 10 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (∃𝑚 ∈ ℕ0 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9720, 96syl5bi 241 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9897impd 410 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ∧ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9998adantr 480 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → ((∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ∧ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
10014, 16, 99syl2and 607 . . . . . 6 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
101100exp32 420 . . . . 5 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑦 ∥ (FermatNo‘𝑁) → (𝑧 ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))))
10212, 101syld 47 . . . 4 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → (𝑧 ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))))
10310, 102mpdd 43 . . 3 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
104103expimpd 453 . 2 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
105104com23 86 1 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  2c2 11958  0cn0 12163  cz 12249  cuz 12511  cexp 13710  cdvds 15891  FermatNocfmtno 44867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-dvds 15892  df-fmtno 44868
This theorem is referenced by:  fmtnofac2  44909
  Copyright terms: Public domain W3C validator