Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1 Structured version   Visualization version   GIF version

Theorem bj-bary1 35166
Description: Barycentric coordinates in one dimension (complex line). In the statement, 𝑋 is the barycenter of the two points 𝐴, 𝐵 with respective normalized coefficients 𝑆, 𝑇. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
bj-bary1.s (𝜑𝑆 ∈ ℂ)
bj-bary1.t (𝜑𝑇 ∈ ℂ)
Assertion
Ref Expression
bj-bary1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))

Proof of Theorem bj-bary1
StepHypRef Expression
1 bj-bary1.s . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
2 bj-bary1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
31, 2mulcld 10818 . . . . . . . 8 (𝜑 → (𝑆 · 𝐴) ∈ ℂ)
4 bj-bary1.t . . . . . . . . 9 (𝜑𝑇 ∈ ℂ)
5 bj-bary1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
64, 5mulcld 10818 . . . . . . . 8 (𝜑 → (𝑇 · 𝐵) ∈ ℂ)
73, 6addcomd 10999 . . . . . . 7 (𝜑 → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + (𝑆 · 𝐴)))
87eqeq2d 2747 . . . . . 6 (𝜑 → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ↔ 𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴))))
98biimpd 232 . . . . 5 (𝜑 → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) → 𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴))))
101, 4addcomd 10999 . . . . . . 7 (𝜑 → (𝑆 + 𝑇) = (𝑇 + 𝑆))
1110eqeq1d 2738 . . . . . 6 (𝜑 → ((𝑆 + 𝑇) = 1 ↔ (𝑇 + 𝑆) = 1))
1211biimpd 232 . . . . 5 (𝜑 → ((𝑆 + 𝑇) = 1 → (𝑇 + 𝑆) = 1))
13 bj-bary1.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
14 bj-bary1.neq . . . . . . 7 (𝜑𝐴𝐵)
1514necomd 2987 . . . . . 6 (𝜑𝐵𝐴)
165, 2, 13, 15, 4, 1bj-bary1lem1 35165 . . . . 5 (𝜑 → ((𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴)) ∧ (𝑇 + 𝑆) = 1) → 𝑆 = ((𝑋𝐵) / (𝐴𝐵))))
179, 12, 16syl2and 611 . . . 4 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑆 = ((𝑋𝐵) / (𝐴𝐵))))
1813, 5, 2, 5, 14div2subd 11623 . . . . 5 (𝜑 → ((𝑋𝐵) / (𝐴𝐵)) = ((𝐵𝑋) / (𝐵𝐴)))
1918eqeq2d 2747 . . . 4 (𝜑 → (𝑆 = ((𝑋𝐵) / (𝐴𝐵)) ↔ 𝑆 = ((𝐵𝑋) / (𝐵𝐴))))
2017, 19sylibd 242 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑆 = ((𝐵𝑋) / (𝐵𝐴))))
212, 5, 13, 14, 1, 4bj-bary1lem1 35165 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
2220, 21jcad 516 . 2 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))
232, 5, 13, 14bj-bary1lem 35164 . . . 4 (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
24 oveq1 7198 . . . . . 6 (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) → (𝑆 · 𝐴) = (((𝐵𝑋) / (𝐵𝐴)) · 𝐴))
25 oveq1 7198 . . . . . 6 (𝑇 = ((𝑋𝐴) / (𝐵𝐴)) → (𝑇 · 𝐵) = (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))
2624, 25oveqan12d 7210 . . . . 5 ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
2726a1i 11 . . . 4 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))))
28 eqtr3 2758 . . . 4 ((𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)) ∧ ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))) → 𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)))
2923, 27, 28syl6an 684 . . 3 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → 𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵))))
30 oveq12 7200 . . . 4 ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑆 + 𝑇) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))))
315, 13subcld 11154 . . . . . . 7 (𝜑 → (𝐵𝑋) ∈ ℂ)
3213, 2subcld 11154 . . . . . . 7 (𝜑 → (𝑋𝐴) ∈ ℂ)
335, 2subcld 11154 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
345, 2, 15subne0d 11163 . . . . . . 7 (𝜑 → (𝐵𝐴) ≠ 0)
3531, 32, 33, 34divdird 11611 . . . . . 6 (𝜑 → (((𝐵𝑋) + (𝑋𝐴)) / (𝐵𝐴)) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))))
365, 13, 2npncand 11178 . . . . . . 7 (𝜑 → ((𝐵𝑋) + (𝑋𝐴)) = (𝐵𝐴))
3733, 34, 36diveq1bd 11621 . . . . . 6 (𝜑 → (((𝐵𝑋) + (𝑋𝐴)) / (𝐵𝐴)) = 1)
3835, 37eqtr3d 2773 . . . . 5 (𝜑 → (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))) = 1)
3938eqeq2d 2747 . . . 4 (𝜑 → ((𝑆 + 𝑇) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))) ↔ (𝑆 + 𝑇) = 1))
4030, 39syl5ib 247 . . 3 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑆 + 𝑇) = 1))
4129, 40jcad 516 . 2 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1)))
4222, 41impbid 215 1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  (class class class)co 7191  cc 10692  1c1 10695   + caddc 10697   · cmul 10699  cmin 11027   / cdiv 11454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator