Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1 Structured version   Visualization version   GIF version

Theorem bj-bary1 37306
Description: Barycentric coordinates in one dimension (complex line). In the statement, 𝑋 is the barycenter of the two points 𝐴, 𝐵 with respective normalized coefficients 𝑆, 𝑇. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
bj-bary1.s (𝜑𝑆 ∈ ℂ)
bj-bary1.t (𝜑𝑇 ∈ ℂ)
Assertion
Ref Expression
bj-bary1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))

Proof of Theorem bj-bary1
StepHypRef Expression
1 bj-bary1.s . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
2 bj-bary1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
31, 2mulcld 11135 . . . . . . . 8 (𝜑 → (𝑆 · 𝐴) ∈ ℂ)
4 bj-bary1.t . . . . . . . . 9 (𝜑𝑇 ∈ ℂ)
5 bj-bary1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
64, 5mulcld 11135 . . . . . . . 8 (𝜑 → (𝑇 · 𝐵) ∈ ℂ)
73, 6addcomd 11318 . . . . . . 7 (𝜑 → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + (𝑆 · 𝐴)))
87eqeq2d 2740 . . . . . 6 (𝜑 → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ↔ 𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴))))
98biimpd 229 . . . . 5 (𝜑 → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) → 𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴))))
101, 4addcomd 11318 . . . . . . 7 (𝜑 → (𝑆 + 𝑇) = (𝑇 + 𝑆))
1110eqeq1d 2731 . . . . . 6 (𝜑 → ((𝑆 + 𝑇) = 1 ↔ (𝑇 + 𝑆) = 1))
1211biimpd 229 . . . . 5 (𝜑 → ((𝑆 + 𝑇) = 1 → (𝑇 + 𝑆) = 1))
13 bj-bary1.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
14 bj-bary1.neq . . . . . . 7 (𝜑𝐴𝐵)
1514necomd 2980 . . . . . 6 (𝜑𝐵𝐴)
165, 2, 13, 15, 4, 1bj-bary1lem1 37305 . . . . 5 (𝜑 → ((𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴)) ∧ (𝑇 + 𝑆) = 1) → 𝑆 = ((𝑋𝐵) / (𝐴𝐵))))
179, 12, 16syl2and 608 . . . 4 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑆 = ((𝑋𝐵) / (𝐴𝐵))))
1813, 5, 2, 5, 14div2subd 11950 . . . . 5 (𝜑 → ((𝑋𝐵) / (𝐴𝐵)) = ((𝐵𝑋) / (𝐵𝐴)))
1918eqeq2d 2740 . . . 4 (𝜑 → (𝑆 = ((𝑋𝐵) / (𝐴𝐵)) ↔ 𝑆 = ((𝐵𝑋) / (𝐵𝐴))))
2017, 19sylibd 239 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑆 = ((𝐵𝑋) / (𝐵𝐴))))
212, 5, 13, 14, 1, 4bj-bary1lem1 37305 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
2220, 21jcad 512 . 2 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))
232, 5, 13, 14bj-bary1lem 37304 . . . 4 (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
24 oveq1 7356 . . . . . 6 (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) → (𝑆 · 𝐴) = (((𝐵𝑋) / (𝐵𝐴)) · 𝐴))
25 oveq1 7356 . . . . . 6 (𝑇 = ((𝑋𝐴) / (𝐵𝐴)) → (𝑇 · 𝐵) = (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))
2624, 25oveqan12d 7368 . . . . 5 ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
2726a1i 11 . . . 4 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))))
28 eqtr3 2751 . . . 4 ((𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)) ∧ ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))) → 𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)))
2923, 27, 28syl6an 684 . . 3 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → 𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵))))
30 oveq12 7358 . . . 4 ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑆 + 𝑇) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))))
315, 13subcld 11475 . . . . . . 7 (𝜑 → (𝐵𝑋) ∈ ℂ)
3213, 2subcld 11475 . . . . . . 7 (𝜑 → (𝑋𝐴) ∈ ℂ)
335, 2subcld 11475 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
345, 2, 15subne0d 11484 . . . . . . 7 (𝜑 → (𝐵𝐴) ≠ 0)
3531, 32, 33, 34divdird 11938 . . . . . 6 (𝜑 → (((𝐵𝑋) + (𝑋𝐴)) / (𝐵𝐴)) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))))
365, 13, 2npncand 11499 . . . . . . 7 (𝜑 → ((𝐵𝑋) + (𝑋𝐴)) = (𝐵𝐴))
3733, 34, 36diveq1bd 11948 . . . . . 6 (𝜑 → (((𝐵𝑋) + (𝑋𝐴)) / (𝐵𝐴)) = 1)
3835, 37eqtr3d 2766 . . . . 5 (𝜑 → (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))) = 1)
3938eqeq2d 2740 . . . 4 (𝜑 → ((𝑆 + 𝑇) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))) ↔ (𝑆 + 𝑇) = 1))
4030, 39imbitrid 244 . . 3 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑆 + 𝑇) = 1))
4129, 40jcad 512 . 2 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1)))
4222, 41impbid 212 1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347   / cdiv 11777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator