Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1 Structured version   Visualization version   GIF version

Theorem bj-bary1 37295
Description: Barycentric coordinates in one dimension (complex line). In the statement, 𝑋 is the barycenter of the two points 𝐴, 𝐵 with respective normalized coefficients 𝑆, 𝑇. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
bj-bary1.s (𝜑𝑆 ∈ ℂ)
bj-bary1.t (𝜑𝑇 ∈ ℂ)
Assertion
Ref Expression
bj-bary1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))

Proof of Theorem bj-bary1
StepHypRef Expression
1 bj-bary1.s . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
2 bj-bary1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
31, 2mulcld 11279 . . . . . . . 8 (𝜑 → (𝑆 · 𝐴) ∈ ℂ)
4 bj-bary1.t . . . . . . . . 9 (𝜑𝑇 ∈ ℂ)
5 bj-bary1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
64, 5mulcld 11279 . . . . . . . 8 (𝜑 → (𝑇 · 𝐵) ∈ ℂ)
73, 6addcomd 11461 . . . . . . 7 (𝜑 → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + (𝑆 · 𝐴)))
87eqeq2d 2746 . . . . . 6 (𝜑 → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ↔ 𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴))))
98biimpd 229 . . . . 5 (𝜑 → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) → 𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴))))
101, 4addcomd 11461 . . . . . . 7 (𝜑 → (𝑆 + 𝑇) = (𝑇 + 𝑆))
1110eqeq1d 2737 . . . . . 6 (𝜑 → ((𝑆 + 𝑇) = 1 ↔ (𝑇 + 𝑆) = 1))
1211biimpd 229 . . . . 5 (𝜑 → ((𝑆 + 𝑇) = 1 → (𝑇 + 𝑆) = 1))
13 bj-bary1.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
14 bj-bary1.neq . . . . . . 7 (𝜑𝐴𝐵)
1514necomd 2994 . . . . . 6 (𝜑𝐵𝐴)
165, 2, 13, 15, 4, 1bj-bary1lem1 37294 . . . . 5 (𝜑 → ((𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴)) ∧ (𝑇 + 𝑆) = 1) → 𝑆 = ((𝑋𝐵) / (𝐴𝐵))))
179, 12, 16syl2and 608 . . . 4 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑆 = ((𝑋𝐵) / (𝐴𝐵))))
1813, 5, 2, 5, 14div2subd 12091 . . . . 5 (𝜑 → ((𝑋𝐵) / (𝐴𝐵)) = ((𝐵𝑋) / (𝐵𝐴)))
1918eqeq2d 2746 . . . 4 (𝜑 → (𝑆 = ((𝑋𝐵) / (𝐴𝐵)) ↔ 𝑆 = ((𝐵𝑋) / (𝐵𝐴))))
2017, 19sylibd 239 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑆 = ((𝐵𝑋) / (𝐵𝐴))))
212, 5, 13, 14, 1, 4bj-bary1lem1 37294 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
2220, 21jcad 512 . 2 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))
232, 5, 13, 14bj-bary1lem 37293 . . . 4 (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
24 oveq1 7438 . . . . . 6 (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) → (𝑆 · 𝐴) = (((𝐵𝑋) / (𝐵𝐴)) · 𝐴))
25 oveq1 7438 . . . . . 6 (𝑇 = ((𝑋𝐴) / (𝐵𝐴)) → (𝑇 · 𝐵) = (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))
2624, 25oveqan12d 7450 . . . . 5 ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
2726a1i 11 . . . 4 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))))
28 eqtr3 2761 . . . 4 ((𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)) ∧ ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))) → 𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)))
2923, 27, 28syl6an 684 . . 3 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → 𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵))))
30 oveq12 7440 . . . 4 ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑆 + 𝑇) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))))
315, 13subcld 11618 . . . . . . 7 (𝜑 → (𝐵𝑋) ∈ ℂ)
3213, 2subcld 11618 . . . . . . 7 (𝜑 → (𝑋𝐴) ∈ ℂ)
335, 2subcld 11618 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
345, 2, 15subne0d 11627 . . . . . . 7 (𝜑 → (𝐵𝐴) ≠ 0)
3531, 32, 33, 34divdird 12079 . . . . . 6 (𝜑 → (((𝐵𝑋) + (𝑋𝐴)) / (𝐵𝐴)) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))))
365, 13, 2npncand 11642 . . . . . . 7 (𝜑 → ((𝐵𝑋) + (𝑋𝐴)) = (𝐵𝐴))
3733, 34, 36diveq1bd 12089 . . . . . 6 (𝜑 → (((𝐵𝑋) + (𝑋𝐴)) / (𝐵𝐴)) = 1)
3835, 37eqtr3d 2777 . . . . 5 (𝜑 → (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))) = 1)
3938eqeq2d 2746 . . . 4 (𝜑 → ((𝑆 + 𝑇) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))) ↔ (𝑆 + 𝑇) = 1))
4030, 39imbitrid 244 . . 3 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑆 + 𝑇) = 1))
4129, 40jcad 512 . 2 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1)))
4222, 41impbid 212 1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  (class class class)co 7431  cc 11151  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490   / cdiv 11918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator