Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffunlem Structured version   Visualization version   GIF version

Theorem satffunlem 33048
Description: Lemma for satffunlem1lem1 33049 and satffunlem2lem1 33051. (Contributed by AV, 27-Oct-2023.)
Assertion
Ref Expression
satffunlem (((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟)))) ∧ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → 𝑦 = 𝑤)

Proof of Theorem satffunlem
StepHypRef Expression
1 eqtr2 2758 . . . . . . . 8 ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑥 = ((1st𝑠)⊼𝑔(1st𝑟))) → ((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑠)⊼𝑔(1st𝑟)))
2 fvex 6719 . . . . . . . . . . . 12 (1st𝑢) ∈ V
3 fvex 6719 . . . . . . . . . . . 12 (1st𝑣) ∈ V
4 gonafv 32997 . . . . . . . . . . . 12 (((1st𝑢) ∈ V ∧ (1st𝑣) ∈ V) → ((1st𝑢)⊼𝑔(1st𝑣)) = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩)
52, 3, 4mp2an 692 . . . . . . . . . . 11 ((1st𝑢)⊼𝑔(1st𝑣)) = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩
6 fvex 6719 . . . . . . . . . . . 12 (1st𝑠) ∈ V
7 fvex 6719 . . . . . . . . . . . 12 (1st𝑟) ∈ V
8 gonafv 32997 . . . . . . . . . . . 12 (((1st𝑠) ∈ V ∧ (1st𝑟) ∈ V) → ((1st𝑠)⊼𝑔(1st𝑟)) = ⟨1o, ⟨(1st𝑠), (1st𝑟)⟩⟩)
96, 7, 8mp2an 692 . . . . . . . . . . 11 ((1st𝑠)⊼𝑔(1st𝑟)) = ⟨1o, ⟨(1st𝑠), (1st𝑟)⟩⟩
105, 9eqeq12i 2752 . . . . . . . . . 10 (((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑠)⊼𝑔(1st𝑟)) ↔ ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ = ⟨1o, ⟨(1st𝑠), (1st𝑟)⟩⟩)
11 1oex 8204 . . . . . . . . . . 11 1o ∈ V
12 opex 5337 . . . . . . . . . . 11 ⟨(1st𝑢), (1st𝑣)⟩ ∈ V
1311, 12opth 5349 . . . . . . . . . 10 (⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ = ⟨1o, ⟨(1st𝑠), (1st𝑟)⟩⟩ ↔ (1o = 1o ∧ ⟨(1st𝑢), (1st𝑣)⟩ = ⟨(1st𝑠), (1st𝑟)⟩))
142, 3opth 5349 . . . . . . . . . . 11 (⟨(1st𝑢), (1st𝑣)⟩ = ⟨(1st𝑠), (1st𝑟)⟩ ↔ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)))
1514anbi2i 626 . . . . . . . . . 10 ((1o = 1o ∧ ⟨(1st𝑢), (1st𝑣)⟩ = ⟨(1st𝑠), (1st𝑟)⟩) ↔ (1o = 1o ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))))
1610, 13, 153bitri 300 . . . . . . . . 9 (((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑠)⊼𝑔(1st𝑟)) ↔ (1o = 1o ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))))
17 funfv1st2nd 7806 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑍𝑠𝑍) → (𝑍‘(1st𝑠)) = (2nd𝑠))
1817ex 416 . . . . . . . . . . . . . . . . . 18 (Fun 𝑍 → (𝑠𝑍 → (𝑍‘(1st𝑠)) = (2nd𝑠)))
19 funfv1st2nd 7806 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑍𝑟𝑍) → (𝑍‘(1st𝑟)) = (2nd𝑟))
2019ex 416 . . . . . . . . . . . . . . . . . 18 (Fun 𝑍 → (𝑟𝑍 → (𝑍‘(1st𝑟)) = (2nd𝑟)))
2118, 20anim12d 612 . . . . . . . . . . . . . . . . 17 (Fun 𝑍 → ((𝑠𝑍𝑟𝑍) → ((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟))))
22 funfv1st2nd 7806 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑍𝑢𝑍) → (𝑍‘(1st𝑢)) = (2nd𝑢))
2322ex 416 . . . . . . . . . . . . . . . . . 18 (Fun 𝑍 → (𝑢𝑍 → (𝑍‘(1st𝑢)) = (2nd𝑢)))
24 funfv1st2nd 7806 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑍𝑣𝑍) → (𝑍‘(1st𝑣)) = (2nd𝑣))
2524ex 416 . . . . . . . . . . . . . . . . . 18 (Fun 𝑍 → (𝑣𝑍 → (𝑍‘(1st𝑣)) = (2nd𝑣)))
2623, 25anim12d 612 . . . . . . . . . . . . . . . . 17 (Fun 𝑍 → ((𝑢𝑍𝑣𝑍) → ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))))
27 fveq2 6706 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1st𝑠) = (1st𝑢) → (𝑍‘(1st𝑠)) = (𝑍‘(1st𝑢)))
2827eqcoms 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑢) = (1st𝑠) → (𝑍‘(1st𝑠)) = (𝑍‘(1st𝑢)))
2928adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → (𝑍‘(1st𝑠)) = (𝑍‘(1st𝑢)))
3029eqeq1d 2736 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((𝑍‘(1st𝑠)) = (2nd𝑠) ↔ (𝑍‘(1st𝑢)) = (2nd𝑠)))
31 fveq2 6706 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1st𝑟) = (1st𝑣) → (𝑍‘(1st𝑟)) = (𝑍‘(1st𝑣)))
3231eqcoms 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑣) = (1st𝑟) → (𝑍‘(1st𝑟)) = (𝑍‘(1st𝑣)))
3332adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → (𝑍‘(1st𝑟)) = (𝑍‘(1st𝑣)))
3433eqeq1d 2736 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((𝑍‘(1st𝑟)) = (2nd𝑟) ↔ (𝑍‘(1st𝑣)) = (2nd𝑟)))
3530, 34anbi12d 634 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → (((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟)) ↔ ((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑣)) = (2nd𝑟))))
3635anbi1d 633 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) ↔ (((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑣)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣)))))
37 eqtr2 2758 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑢)) = (2nd𝑢)) → (2nd𝑠) = (2nd𝑢))
3837ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑣)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → (2nd𝑠) = (2nd𝑢))
39 eqtr2 2758 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍‘(1st𝑣)) = (2nd𝑟) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣)) → (2nd𝑟) = (2nd𝑣))
4039ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑣)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → (2nd𝑟) = (2nd𝑣))
4138, 40ineq12d 4118 . . . . . . . . . . . . . . . . . . . 20 ((((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑣)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣)))
4236, 41syl6bi 256 . . . . . . . . . . . . . . . . . . 19 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣))))
4342com12 32 . . . . . . . . . . . . . . . . . 18 ((((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣))))
4443a1i 11 . . . . . . . . . . . . . . . . 17 (Fun 𝑍 → ((((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣)))))
4521, 26, 44syl2and 611 . . . . . . . . . . . . . . . 16 (Fun 𝑍 → (((𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣)))))
4645expd 419 . . . . . . . . . . . . . . 15 (Fun 𝑍 → ((𝑠𝑍𝑟𝑍) → ((𝑢𝑍𝑣𝑍) → (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣))))))
47463imp1 1349 . . . . . . . . . . . . . 14 (((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣)))
4847difeq2d 4027 . . . . . . . . . . . . 13 (((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) → ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))
4948adantr 484 . . . . . . . . . . . 12 ((((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) ∧ (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))
50 eqeq12 2751 . . . . . . . . . . . . 13 ((𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → (𝑦 = 𝑤 ↔ ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
5150adantl 485 . . . . . . . . . . . 12 ((((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) ∧ (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → (𝑦 = 𝑤 ↔ ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
5249, 51mpbird 260 . . . . . . . . . . 11 ((((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) ∧ (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → 𝑦 = 𝑤)
5352exp43 440 . . . . . . . . . 10 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑦 = 𝑤))))
5453adantld 494 . . . . . . . . 9 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → ((1o = 1o ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑦 = 𝑤))))
5516, 54syl5bi 245 . . . . . . . 8 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑠)⊼𝑔(1st𝑟)) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑦 = 𝑤))))
561, 55syl5 34 . . . . . . 7 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑥 = ((1st𝑠)⊼𝑔(1st𝑟))) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑦 = 𝑤))))
5756expd 419 . . . . . 6 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑦 = 𝑤)))))
5857com35 98 . . . . 5 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) → 𝑦 = 𝑤)))))
5958impd 414 . . . 4 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) → 𝑦 = 𝑤))))
6059com24 95 . . 3 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → 𝑦 = 𝑤))))
6160impd 414 . 2 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → ((𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟)))) → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → 𝑦 = 𝑤)))
62613imp 1113 1 (((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟)))) ∧ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → 𝑦 = 𝑤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3401  cdif 3854  cin 3856  cop 4537  Fun wfun 6363  cfv 6369  (class class class)co 7202  ωcom 7633  1st c1st 7748  2nd c2nd 7749  1oc1o 8184  m cmap 8497  𝑔cgna 32981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-suc 6208  df-iota 6327  df-fun 6371  df-fv 6377  df-ov 7205  df-1st 7750  df-2nd 7751  df-1o 8191  df-gona 32988
This theorem is referenced by:  satffunlem1lem1  33049  satffunlem2lem1  33051
  Copyright terms: Public domain W3C validator