Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffunlem Structured version   Visualization version   GIF version

Theorem satffunlem 35443
Description: Lemma for satffunlem1lem1 35444 and satffunlem2lem1 35446. (Contributed by AV, 27-Oct-2023.)
Assertion
Ref Expression
satffunlem (((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟)))) ∧ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → 𝑦 = 𝑤)

Proof of Theorem satffunlem
StepHypRef Expression
1 eqtr2 2752 . . . . . . . 8 ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑥 = ((1st𝑠)⊼𝑔(1st𝑟))) → ((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑠)⊼𝑔(1st𝑟)))
2 fvex 6835 . . . . . . . . . . . 12 (1st𝑢) ∈ V
3 fvex 6835 . . . . . . . . . . . 12 (1st𝑣) ∈ V
4 gonafv 35392 . . . . . . . . . . . 12 (((1st𝑢) ∈ V ∧ (1st𝑣) ∈ V) → ((1st𝑢)⊼𝑔(1st𝑣)) = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩)
52, 3, 4mp2an 692 . . . . . . . . . . 11 ((1st𝑢)⊼𝑔(1st𝑣)) = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩
6 fvex 6835 . . . . . . . . . . . 12 (1st𝑠) ∈ V
7 fvex 6835 . . . . . . . . . . . 12 (1st𝑟) ∈ V
8 gonafv 35392 . . . . . . . . . . . 12 (((1st𝑠) ∈ V ∧ (1st𝑟) ∈ V) → ((1st𝑠)⊼𝑔(1st𝑟)) = ⟨1o, ⟨(1st𝑠), (1st𝑟)⟩⟩)
96, 7, 8mp2an 692 . . . . . . . . . . 11 ((1st𝑠)⊼𝑔(1st𝑟)) = ⟨1o, ⟨(1st𝑠), (1st𝑟)⟩⟩
105, 9eqeq12i 2749 . . . . . . . . . 10 (((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑠)⊼𝑔(1st𝑟)) ↔ ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ = ⟨1o, ⟨(1st𝑠), (1st𝑟)⟩⟩)
11 1oex 8395 . . . . . . . . . . 11 1o ∈ V
12 opex 5404 . . . . . . . . . . 11 ⟨(1st𝑢), (1st𝑣)⟩ ∈ V
1311, 12opth 5416 . . . . . . . . . 10 (⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ = ⟨1o, ⟨(1st𝑠), (1st𝑟)⟩⟩ ↔ (1o = 1o ∧ ⟨(1st𝑢), (1st𝑣)⟩ = ⟨(1st𝑠), (1st𝑟)⟩))
142, 3opth 5416 . . . . . . . . . . 11 (⟨(1st𝑢), (1st𝑣)⟩ = ⟨(1st𝑠), (1st𝑟)⟩ ↔ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)))
1514anbi2i 623 . . . . . . . . . 10 ((1o = 1o ∧ ⟨(1st𝑢), (1st𝑣)⟩ = ⟨(1st𝑠), (1st𝑟)⟩) ↔ (1o = 1o ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))))
1610, 13, 153bitri 297 . . . . . . . . 9 (((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑠)⊼𝑔(1st𝑟)) ↔ (1o = 1o ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))))
17 funfv1st2nd 7978 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑍𝑠𝑍) → (𝑍‘(1st𝑠)) = (2nd𝑠))
1817ex 412 . . . . . . . . . . . . . . . . . 18 (Fun 𝑍 → (𝑠𝑍 → (𝑍‘(1st𝑠)) = (2nd𝑠)))
19 funfv1st2nd 7978 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑍𝑟𝑍) → (𝑍‘(1st𝑟)) = (2nd𝑟))
2019ex 412 . . . . . . . . . . . . . . . . . 18 (Fun 𝑍 → (𝑟𝑍 → (𝑍‘(1st𝑟)) = (2nd𝑟)))
2118, 20anim12d 609 . . . . . . . . . . . . . . . . 17 (Fun 𝑍 → ((𝑠𝑍𝑟𝑍) → ((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟))))
22 funfv1st2nd 7978 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑍𝑢𝑍) → (𝑍‘(1st𝑢)) = (2nd𝑢))
2322ex 412 . . . . . . . . . . . . . . . . . 18 (Fun 𝑍 → (𝑢𝑍 → (𝑍‘(1st𝑢)) = (2nd𝑢)))
24 funfv1st2nd 7978 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑍𝑣𝑍) → (𝑍‘(1st𝑣)) = (2nd𝑣))
2524ex 412 . . . . . . . . . . . . . . . . . 18 (Fun 𝑍 → (𝑣𝑍 → (𝑍‘(1st𝑣)) = (2nd𝑣)))
2623, 25anim12d 609 . . . . . . . . . . . . . . . . 17 (Fun 𝑍 → ((𝑢𝑍𝑣𝑍) → ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))))
27 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1st𝑠) = (1st𝑢) → (𝑍‘(1st𝑠)) = (𝑍‘(1st𝑢)))
2827eqcoms 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑢) = (1st𝑠) → (𝑍‘(1st𝑠)) = (𝑍‘(1st𝑢)))
2928adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → (𝑍‘(1st𝑠)) = (𝑍‘(1st𝑢)))
3029eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((𝑍‘(1st𝑠)) = (2nd𝑠) ↔ (𝑍‘(1st𝑢)) = (2nd𝑠)))
31 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1st𝑟) = (1st𝑣) → (𝑍‘(1st𝑟)) = (𝑍‘(1st𝑣)))
3231eqcoms 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑣) = (1st𝑟) → (𝑍‘(1st𝑟)) = (𝑍‘(1st𝑣)))
3332adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → (𝑍‘(1st𝑟)) = (𝑍‘(1st𝑣)))
3433eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((𝑍‘(1st𝑟)) = (2nd𝑟) ↔ (𝑍‘(1st𝑣)) = (2nd𝑟)))
3530, 34anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → (((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟)) ↔ ((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑣)) = (2nd𝑟))))
3635anbi1d 631 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) ↔ (((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑣)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣)))))
37 eqtr2 2752 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑢)) = (2nd𝑢)) → (2nd𝑠) = (2nd𝑢))
3837ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑣)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → (2nd𝑠) = (2nd𝑢))
39 eqtr2 2752 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍‘(1st𝑣)) = (2nd𝑟) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣)) → (2nd𝑟) = (2nd𝑣))
4039ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑣)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → (2nd𝑟) = (2nd𝑣))
4138, 40ineq12d 4171 . . . . . . . . . . . . . . . . . . . 20 ((((𝑍‘(1st𝑢)) = (2nd𝑠) ∧ (𝑍‘(1st𝑣)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣)))
4236, 41biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣))))
4342com12 32 . . . . . . . . . . . . . . . . . 18 ((((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣))))
4443a1i 11 . . . . . . . . . . . . . . . . 17 (Fun 𝑍 → ((((𝑍‘(1st𝑠)) = (2nd𝑠) ∧ (𝑍‘(1st𝑟)) = (2nd𝑟)) ∧ ((𝑍‘(1st𝑢)) = (2nd𝑢) ∧ (𝑍‘(1st𝑣)) = (2nd𝑣))) → (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣)))))
4521, 26, 44syl2and 608 . . . . . . . . . . . . . . . 16 (Fun 𝑍 → (((𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣)))))
4645expd 415 . . . . . . . . . . . . . . 15 (Fun 𝑍 → ((𝑠𝑍𝑟𝑍) → ((𝑢𝑍𝑣𝑍) → (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣))))))
47463imp1 1348 . . . . . . . . . . . . . 14 (((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) → ((2nd𝑠) ∩ (2nd𝑟)) = ((2nd𝑢) ∩ (2nd𝑣)))
4847difeq2d 4076 . . . . . . . . . . . . 13 (((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) → ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))
4948adantr 480 . . . . . . . . . . . 12 ((((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) ∧ (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))
50 eqeq12 2748 . . . . . . . . . . . . 13 ((𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → (𝑦 = 𝑤 ↔ ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
5150adantl 481 . . . . . . . . . . . 12 ((((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) ∧ (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → (𝑦 = 𝑤 ↔ ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
5249, 51mpbird 257 . . . . . . . . . . 11 ((((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) ∧ (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → 𝑦 = 𝑤)
5352exp43 436 . . . . . . . . . 10 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟)) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑦 = 𝑤))))
5453adantld 490 . . . . . . . . 9 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → ((1o = 1o ∧ ((1st𝑢) = (1st𝑠) ∧ (1st𝑣) = (1st𝑟))) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑦 = 𝑤))))
5516, 54biimtrid 242 . . . . . . . 8 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑠)⊼𝑔(1st𝑟)) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑦 = 𝑤))))
561, 55syl5 34 . . . . . . 7 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑥 = ((1st𝑠)⊼𝑔(1st𝑟))) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑦 = 𝑤))))
5756expd 415 . . . . . 6 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑦 = 𝑤)))))
5857com35 98 . . . . 5 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) → 𝑦 = 𝑤)))))
5958impd 410 . . . 4 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) → 𝑦 = 𝑤))))
6059com24 95 . . 3 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟))) → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → 𝑦 = 𝑤))))
6160impd 410 . 2 ((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) → ((𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟)))) → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → 𝑦 = 𝑤)))
62613imp 1110 1 (((Fun 𝑍 ∧ (𝑠𝑍𝑟𝑍) ∧ (𝑢𝑍𝑣𝑍)) ∧ (𝑥 = ((1st𝑠)⊼𝑔(1st𝑟)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑠) ∩ (2nd𝑟)))) ∧ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → 𝑦 = 𝑤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3899  cin 3901  cop 4582  Fun wfun 6475  cfv 6481  (class class class)co 7346  ωcom 7796  1st c1st 7919  2nd c2nd 7920  1oc1o 8378  m cmap 8750  𝑔cgna 35376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-suc 6312  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-1st 7921  df-2nd 7922  df-1o 8385  df-gona 35383
This theorem is referenced by:  satffunlem1lem1  35444  satffunlem2lem1  35446
  Copyright terms: Public domain W3C validator