Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofsn Structured version   Visualization version   GIF version

Theorem mofsn 47463
Description: There is at most one function into a singleton, with fewer axioms than eufsn 47461 and eufsn2 47462. See also mofsn2 47464. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mofsn (𝐵𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑉

Proof of Theorem mofsn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fconst2g 7200 . . . . 5 (𝐵𝑉 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
21biimpd 228 . . . 4 (𝐵𝑉 → (𝑓:𝐴⟶{𝐵} → 𝑓 = (𝐴 × {𝐵})))
3 fconst2g 7200 . . . . 5 (𝐵𝑉 → (𝑔:𝐴⟶{𝐵} ↔ 𝑔 = (𝐴 × {𝐵})))
43biimpd 228 . . . 4 (𝐵𝑉 → (𝑔:𝐴⟶{𝐵} → 𝑔 = (𝐴 × {𝐵})))
5 eqtr3 2758 . . . . 5 ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔)
65a1i 11 . . . 4 (𝐵𝑉 → ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔))
72, 4, 6syl2and 608 . . 3 (𝐵𝑉 → ((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔))
87alrimivv 1931 . 2 (𝐵𝑉 → ∀𝑓𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔))
9 feq1 6695 . . 3 (𝑓 = 𝑔 → (𝑓:𝐴⟶{𝐵} ↔ 𝑔:𝐴⟶{𝐵}))
109mo4 2560 . 2 (∃*𝑓 𝑓:𝐴⟶{𝐵} ↔ ∀𝑓𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔))
118, 10sylibr 233 1 (𝐵𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wcel 2106  ∃*wmo 2532  {csn 4627   × cxp 5673  wf 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548
This theorem is referenced by:  mofsn2  47464
  Copyright terms: Public domain W3C validator