Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofsn Structured version   Visualization version   GIF version

Theorem mofsn 46059
Description: There is at most one function into a singleton, with fewer axioms than eufsn 46057 and eufsn2 46058. See also mofsn2 46060. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mofsn (𝐵𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑉

Proof of Theorem mofsn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fconst2g 7060 . . . . 5 (𝐵𝑉 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
21biimpd 228 . . . 4 (𝐵𝑉 → (𝑓:𝐴⟶{𝐵} → 𝑓 = (𝐴 × {𝐵})))
3 fconst2g 7060 . . . . 5 (𝐵𝑉 → (𝑔:𝐴⟶{𝐵} ↔ 𝑔 = (𝐴 × {𝐵})))
43biimpd 228 . . . 4 (𝐵𝑉 → (𝑔:𝐴⟶{𝐵} → 𝑔 = (𝐴 × {𝐵})))
5 eqtr3 2764 . . . . 5 ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔)
65a1i 11 . . . 4 (𝐵𝑉 → ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔))
72, 4, 6syl2and 607 . . 3 (𝐵𝑉 → ((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔))
87alrimivv 1932 . 2 (𝐵𝑉 → ∀𝑓𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔))
9 feq1 6565 . . 3 (𝑓 = 𝑔 → (𝑓:𝐴⟶{𝐵} ↔ 𝑔:𝐴⟶{𝐵}))
109mo4 2566 . 2 (∃*𝑓 𝑓:𝐴⟶{𝐵} ↔ ∀𝑓𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔))
118, 10sylibr 233 1 (𝐵𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2108  ∃*wmo 2538  {csn 4558   × cxp 5578  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  mofsn2  46060
  Copyright terms: Public domain W3C validator