| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mofsn | Structured version Visualization version GIF version | ||
| Description: There is at most one function into a singleton, with fewer axioms than eufsn 48836 and eufsn2 48837. See also mofsn2 48839. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| mofsn | ⊢ (𝐵 ∈ 𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst2g 7139 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) | |
| 2 | 1 | biimpd 229 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓:𝐴⟶{𝐵} → 𝑓 = (𝐴 × {𝐵}))) |
| 3 | fconst2g 7139 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝑔:𝐴⟶{𝐵} ↔ 𝑔 = (𝐴 × {𝐵}))) | |
| 4 | 3 | biimpd 229 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑔:𝐴⟶{𝐵} → 𝑔 = (𝐴 × {𝐵}))) |
| 5 | eqtr3 2751 | . . . . 5 ⊢ ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔) | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔)) |
| 7 | 2, 4, 6 | syl2and 608 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔)) |
| 8 | 7 | alrimivv 1928 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∀𝑓∀𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔)) |
| 9 | feq1 6630 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶{𝐵} ↔ 𝑔:𝐴⟶{𝐵})) | |
| 10 | 9 | mo4 2559 | . 2 ⊢ (∃*𝑓 𝑓:𝐴⟶{𝐵} ↔ ∀𝑓∀𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔)) |
| 11 | 8, 10 | sylibr 234 | 1 ⊢ (𝐵 ∈ 𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 {csn 4577 × cxp 5617 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 |
| This theorem is referenced by: mofsn2 48839 |
| Copyright terms: Public domain | W3C validator |