Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofsn Structured version   Visualization version   GIF version

Theorem mofsn 48954
Description: There is at most one function into a singleton, with fewer axioms than eufsn 48952 and eufsn2 48953. See also mofsn2 48955. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mofsn (𝐵𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑉

Proof of Theorem mofsn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fconst2g 7137 . . . . 5 (𝐵𝑉 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵})))
21biimpd 229 . . . 4 (𝐵𝑉 → (𝑓:𝐴⟶{𝐵} → 𝑓 = (𝐴 × {𝐵})))
3 fconst2g 7137 . . . . 5 (𝐵𝑉 → (𝑔:𝐴⟶{𝐵} ↔ 𝑔 = (𝐴 × {𝐵})))
43biimpd 229 . . . 4 (𝐵𝑉 → (𝑔:𝐴⟶{𝐵} → 𝑔 = (𝐴 × {𝐵})))
5 eqtr3 2753 . . . . 5 ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔)
65a1i 11 . . . 4 (𝐵𝑉 → ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔))
72, 4, 6syl2and 608 . . 3 (𝐵𝑉 → ((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔))
87alrimivv 1929 . 2 (𝐵𝑉 → ∀𝑓𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔))
9 feq1 6629 . . 3 (𝑓 = 𝑔 → (𝑓:𝐴⟶{𝐵} ↔ 𝑔:𝐴⟶{𝐵}))
109mo4 2561 . 2 (∃*𝑓 𝑓:𝐴⟶{𝐵} ↔ ∀𝑓𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔))
118, 10sylibr 234 1 (𝐵𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  ∃*wmo 2533  {csn 4573   × cxp 5612  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  mofsn2  48955
  Copyright terms: Public domain W3C validator