| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mofsn | Structured version Visualization version GIF version | ||
| Description: There is at most one function into a singleton, with fewer axioms than eufsn 48952 and eufsn2 48953. See also mofsn2 48955. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| mofsn | ⊢ (𝐵 ∈ 𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst2g 7137 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) | |
| 2 | 1 | biimpd 229 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓:𝐴⟶{𝐵} → 𝑓 = (𝐴 × {𝐵}))) |
| 3 | fconst2g 7137 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝑔:𝐴⟶{𝐵} ↔ 𝑔 = (𝐴 × {𝐵}))) | |
| 4 | 3 | biimpd 229 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑔:𝐴⟶{𝐵} → 𝑔 = (𝐴 × {𝐵}))) |
| 5 | eqtr3 2753 | . . . . 5 ⊢ ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔) | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔)) |
| 7 | 2, 4, 6 | syl2and 608 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔)) |
| 8 | 7 | alrimivv 1929 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∀𝑓∀𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔)) |
| 9 | feq1 6629 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶{𝐵} ↔ 𝑔:𝐴⟶{𝐵})) | |
| 10 | 9 | mo4 2561 | . 2 ⊢ (∃*𝑓 𝑓:𝐴⟶{𝐵} ↔ ∀𝑓∀𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔)) |
| 11 | 8, 10 | sylibr 234 | 1 ⊢ (𝐵 ∈ 𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∃*wmo 2533 {csn 4573 × cxp 5612 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: mofsn2 48955 |
| Copyright terms: Public domain | W3C validator |