| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mofsn | Structured version Visualization version GIF version | ||
| Description: There is at most one function into a singleton, with fewer axioms than eufsn 48697 and eufsn2 48698. See also mofsn2 48700. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| mofsn | ⊢ (𝐵 ∈ 𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst2g 7206 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝑓:𝐴⟶{𝐵} ↔ 𝑓 = (𝐴 × {𝐵}))) | |
| 2 | 1 | biimpd 229 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓:𝐴⟶{𝐵} → 𝑓 = (𝐴 × {𝐵}))) |
| 3 | fconst2g 7206 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝑔:𝐴⟶{𝐵} ↔ 𝑔 = (𝐴 × {𝐵}))) | |
| 4 | 3 | biimpd 229 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑔:𝐴⟶{𝐵} → 𝑔 = (𝐴 × {𝐵}))) |
| 5 | eqtr3 2756 | . . . . 5 ⊢ ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔) | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ((𝑓 = (𝐴 × {𝐵}) ∧ 𝑔 = (𝐴 × {𝐵})) → 𝑓 = 𝑔)) |
| 7 | 2, 4, 6 | syl2and 608 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔)) |
| 8 | 7 | alrimivv 1927 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∀𝑓∀𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔)) |
| 9 | feq1 6697 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶{𝐵} ↔ 𝑔:𝐴⟶{𝐵})) | |
| 10 | 9 | mo4 2564 | . 2 ⊢ (∃*𝑓 𝑓:𝐴⟶{𝐵} ↔ ∀𝑓∀𝑔((𝑓:𝐴⟶{𝐵} ∧ 𝑔:𝐴⟶{𝐵}) → 𝑓 = 𝑔)) |
| 11 | 8, 10 | sylibr 234 | 1 ⊢ (𝐵 ∈ 𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ∃*wmo 2536 {csn 4608 × cxp 5665 ⟶wf 6538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 |
| This theorem is referenced by: mofsn2 48700 |
| Copyright terms: Public domain | W3C validator |