![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > termcterm | Structured version Visualization version GIF version |
Description: A terminal category is a terminal object of the category of small categories. (Contributed by Zhi Wang, 17-Oct-2025.) |
Ref | Expression |
---|---|
termcterm.e | ⊢ 𝐸 = (CatCat‘𝑈) |
termcterm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
termcterm.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
termcterm.t | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
Ref | Expression |
---|---|
termcterm | ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝑑 ∈ (Base‘𝐸)) | |
2 | termcterm.e | . . . . . . . . 9 ⊢ 𝐸 = (CatCat‘𝑈) | |
3 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
4 | termcterm.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
5 | 2, 3, 4 | catcbas 18142 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝐸) = (𝑈 ∩ Cat)) |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → (Base‘𝐸) = (𝑈 ∩ Cat)) |
7 | 1, 6 | eleqtrd 2842 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝑑 ∈ (𝑈 ∩ Cat)) |
8 | 7 | elin2d 4204 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝑑 ∈ Cat) |
9 | termcterm.t | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝐶 ∈ TermCat) |
11 | 8, 10 | functermceu 49115 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → ∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)) |
12 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝑈 ∈ 𝑉) |
13 | eqid 2736 | . . . . . . 7 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
14 | termcterm.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
15 | 9 | termccd 49099 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ Cat) |
16 | 14, 15 | elind 4199 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∩ Cat)) |
17 | 16, 5 | eleqtrrd 2843 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐸)) |
18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝐶 ∈ (Base‘𝐸)) |
19 | 2, 3, 12, 13, 1, 18 | catchom 18144 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → (𝑑(Hom ‘𝐸)𝐶) = (𝑑 Func 𝐶)) |
20 | 19 | eleq2d 2826 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → (𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶) ↔ 𝑓 ∈ (𝑑 Func 𝐶))) |
21 | 20 | eubidv 2585 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → (∃!𝑓 𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶) ↔ ∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶))) |
22 | 11, 21 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → ∃!𝑓 𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶)) |
23 | 22 | ralrimiva 3145 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ (Base‘𝐸)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶)) |
24 | 2 | catccat 18149 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐸 ∈ Cat) |
25 | 4, 24 | syl 17 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
26 | 3, 13, 25, 17 | istermo 18038 | . 2 ⊢ (𝜑 → (𝐶 ∈ (TermO‘𝐸) ↔ ∀𝑑 ∈ (Base‘𝐸)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶))) |
27 | 23, 26 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃!weu 2567 ∀wral 3060 ∩ cin 3949 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Hom chom 17304 Catccat 17703 Func cfunc 17895 TermOctermo 18023 CatCatccatc 18139 TermCatctermc 49092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-er 8741 df-map 8864 df-ixp 8934 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17244 df-hom 17317 df-cco 17318 df-cat 17707 df-cid 17708 df-func 17899 df-idfu 17900 df-cofu 17901 df-termo 18026 df-catc 18140 df-thinc 49041 df-termc 49093 |
This theorem is referenced by: termcterm2 49119 termcterm3 49120 |
Copyright terms: Public domain | W3C validator |