| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcterm | Structured version Visualization version GIF version | ||
| Description: A terminal category is a terminal object of the category of small categories. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcterm.e | ⊢ 𝐸 = (CatCat‘𝑈) |
| termcterm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| termcterm.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| termcterm.t | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Ref | Expression |
|---|---|
| termcterm | ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝑑 ∈ (Base‘𝐸)) | |
| 2 | termcterm.e | . . . . . . . . 9 ⊢ 𝐸 = (CatCat‘𝑈) | |
| 3 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 4 | termcterm.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 5 | 2, 3, 4 | catcbas 18016 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝐸) = (𝑈 ∩ Cat)) |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → (Base‘𝐸) = (𝑈 ∩ Cat)) |
| 7 | 1, 6 | eleqtrd 2835 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝑑 ∈ (𝑈 ∩ Cat)) |
| 8 | 7 | elin2d 4154 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝑑 ∈ Cat) |
| 9 | termcterm.t | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝐶 ∈ TermCat) |
| 11 | 8, 10 | functermceu 49671 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → ∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)) |
| 12 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝑈 ∈ 𝑉) |
| 13 | eqid 2733 | . . . . . . 7 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 14 | termcterm.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 15 | 9 | termccd 49640 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 16 | 14, 15 | elind 4149 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∩ Cat)) |
| 17 | 16, 5 | eleqtrrd 2836 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐸)) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → 𝐶 ∈ (Base‘𝐸)) |
| 19 | 2, 3, 12, 13, 1, 18 | catchom 18018 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → (𝑑(Hom ‘𝐸)𝐶) = (𝑑 Func 𝐶)) |
| 20 | 19 | eleq2d 2819 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → (𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶) ↔ 𝑓 ∈ (𝑑 Func 𝐶))) |
| 21 | 20 | eubidv 2583 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → (∃!𝑓 𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶) ↔ ∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶))) |
| 22 | 11, 21 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ (Base‘𝐸)) → ∃!𝑓 𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶)) |
| 23 | 22 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ (Base‘𝐸)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶)) |
| 24 | 2 | catccat 18023 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐸 ∈ Cat) |
| 25 | 4, 24 | syl 17 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 26 | 3, 13, 25, 17 | istermo 17912 | . 2 ⊢ (𝜑 → (𝐶 ∈ (TermO‘𝐸) ↔ ∀𝑑 ∈ (Base‘𝐸)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶))) |
| 27 | 23, 26 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃!weu 2565 ∀wral 3048 ∩ cin 3897 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Hom chom 17179 Catccat 17578 Func cfunc 17769 TermOctermo 17897 CatCatccatc 18013 TermCatctermc 49633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-hom 17192 df-cco 17193 df-cat 17582 df-cid 17583 df-func 17773 df-idfu 17774 df-cofu 17775 df-termo 17900 df-catc 18014 df-thinc 49579 df-termc 49634 |
| This theorem is referenced by: termcterm2 49675 termcterm3 49676 termcciso 49677 termccisoeu 49678 |
| Copyright terms: Public domain | W3C validator |