Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termc2 Structured version   Visualization version   GIF version

Theorem termc2 49216
Description: If there exists a unique functor from both the category itself and the trivial category, then the category is terminal. Note that the converse also holds, so that it is a biconditional. See the proof of termc 49217 for hints. See also eufunc 49220 and euendfunc2 49225 for some insights on why two categories are sufficient. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
termc2 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ TermCat)
Distinct variable group:   𝐶,𝑑,𝑓

Proof of Theorem termc2
StepHypRef Expression
1 eqid 2734 . 2 (CatCat‘{𝐶, (SetCat‘1o)}) = (CatCat‘{𝐶, (SetCat‘1o)})
2 fvex 6899 . . . . . 6 (SetCat‘1o) ∈ V
32prid2 4743 . . . . 5 (SetCat‘1o) ∈ {𝐶, (SetCat‘1o)}
4 setc1oterm 49189 . . . . 5 (SetCat‘1o) ∈ TermCat
53, 4elini 4179 . . . 4 (SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩ TermCat)
65ne0ii 4324 . . 3 ({𝐶, (SetCat‘1o)} ∩ TermCat) ≠ ∅
76a1i 11 . 2 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ({𝐶, (SetCat‘1o)} ∩ TermCat) ≠ ∅)
84a1i 11 . . . . . . . . 9 (⊤ → (SetCat‘1o) ∈ TermCat)
98termccd 49178 . . . . . . . 8 (⊤ → (SetCat‘1o) ∈ Cat)
109mptru 1546 . . . . . . 7 (SetCat‘1o) ∈ Cat
113, 10elini 4179 . . . . . 6 (SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)
12 oveq1 7420 . . . . . . . . 9 (𝑑 = (SetCat‘1o) → (𝑑 Func 𝐶) = ((SetCat‘1o) Func 𝐶))
1312eleq2d 2819 . . . . . . . 8 (𝑑 = (SetCat‘1o) → (𝑓 ∈ (𝑑 Func 𝐶) ↔ 𝑓 ∈ ((SetCat‘1o) Func 𝐶)))
1413eubidv 2584 . . . . . . 7 (𝑑 = (SetCat‘1o) → (∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) ↔ ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶)))
1514rspcv 3601 . . . . . 6 ((SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩ Cat) → (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶)))
1611, 15ax-mp 5 . . . . 5 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶))
17 euen1b 9050 . . . . 5 (((SetCat‘1o) Func 𝐶) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶))
1816, 17sylibr 234 . . . 4 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ((SetCat‘1o) Func 𝐶) ≈ 1o)
19 eqid 2734 . . . . . . . . 9 (Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = (Base‘(CatCat‘{𝐶, (SetCat‘1o)}))
20 prex 5417 . . . . . . . . . 10 {𝐶, (SetCat‘1o)} ∈ V
2120a1i 11 . . . . . . . . 9 (⊤ → {𝐶, (SetCat‘1o)} ∈ V)
221, 19, 21catcbas 18118 . . . . . . . 8 (⊤ → (Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = ({𝐶, (SetCat‘1o)} ∩ Cat))
2322mptru 1546 . . . . . . 7 (Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = ({𝐶, (SetCat‘1o)} ∩ Cat)
2423eqcomi 2743 . . . . . 6 ({𝐶, (SetCat‘1o)} ∩ Cat) = (Base‘(CatCat‘{𝐶, (SetCat‘1o)}))
25 eqid 2734 . . . . . 6 (Hom ‘(CatCat‘{𝐶, (SetCat‘1o)})) = (Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))
261catccat 18125 . . . . . . . 8 ({𝐶, (SetCat‘1o)} ∈ V → (CatCat‘{𝐶, (SetCat‘1o)}) ∈ Cat)
2720, 26ax-mp 5 . . . . . . 7 (CatCat‘{𝐶, (SetCat‘1o)}) ∈ Cat
2827a1i 11 . . . . . 6 (((SetCat‘1o) Func 𝐶) ≈ 1o → (CatCat‘{𝐶, (SetCat‘1o)}) ∈ Cat)
29 euex 2575 . . . . . . . . . 10 (∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶) → ∃𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶))
30 funcrcl 17880 . . . . . . . . . . . 12 (𝑓 ∈ ((SetCat‘1o) Func 𝐶) → ((SetCat‘1o) ∈ Cat ∧ 𝐶 ∈ Cat))
3130simprd 495 . . . . . . . . . . 11 (𝑓 ∈ ((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat)
3231exlimiv 1929 . . . . . . . . . 10 (∃𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat)
3329, 32syl 17 . . . . . . . . 9 (∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat)
3417, 33sylbi 217 . . . . . . . 8 (((SetCat‘1o) Func 𝐶) ≈ 1o𝐶 ∈ Cat)
35 prid1g 4740 . . . . . . . 8 (𝐶 ∈ Cat → 𝐶 ∈ {𝐶, (SetCat‘1o)})
3634, 35syl 17 . . . . . . 7 (((SetCat‘1o) Func 𝐶) ≈ 1o𝐶 ∈ {𝐶, (SetCat‘1o)})
3736, 34elind 4180 . . . . . 6 (((SetCat‘1o) Func 𝐶) ≈ 1o𝐶 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
3824, 25, 28, 37istermo 18014 . . . . 5 (((SetCat‘1o) Func 𝐶) ≈ 1o → (𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶)))
3920a1i 11 . . . . . . . . 9 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → {𝐶, (SetCat‘1o)} ∈ V)
40 simpr 484 . . . . . . . . 9 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
4137adantr 480 . . . . . . . . 9 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → 𝐶 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
421, 24, 39, 25, 40, 41catchom 18120 . . . . . . . 8 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) = (𝑑 Func 𝐶))
4342eleq2d 2819 . . . . . . 7 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → (𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ 𝑓 ∈ (𝑑 Func 𝐶)))
4443eubidv 2584 . . . . . 6 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → (∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ ∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4544ralbidva 3163 . . . . 5 (((SetCat‘1o) Func 𝐶) ≈ 1o → (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4638, 45bitrd 279 . . . 4 (((SetCat‘1o) Func 𝐶) ≈ 1o → (𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4718, 46syl 17 . . 3 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → (𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4847ibir 268 . 2 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})))
491, 7, 48termcterm2 49212 1 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ TermCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wtru 1540  wex 1778  wcel 2107  ∃!weu 2566  wne 2931  wral 3050  Vcvv 3463  cin 3930  c0 4313  {cpr 4608   class class class wbr 5123  cfv 6541  (class class class)co 7413  1oc1o 8481  cen 8964  Basecbs 17230  Hom chom 17285  Catccat 17679   Func cfunc 17871  TermOctermo 17999  SetCatcsetc 18092  CatCatccatc 18115  TermCatctermc 49171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-cat 17683  df-cid 17684  df-sect 17763  df-inv 17764  df-iso 17765  df-cic 17812  df-func 17875  df-idfu 17876  df-cofu 17877  df-full 17923  df-fth 17924  df-termo 18002  df-setc 18093  df-catc 18116  df-thinc 49119  df-termc 49172
This theorem is referenced by:  termc  49217
  Copyright terms: Public domain W3C validator