Proof of Theorem termc2
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. 2
⊢
(CatCat‘{𝐶,
(SetCat‘1o)}) = (CatCat‘{𝐶,
(SetCat‘1o)}) |
| 2 | | fvex 6899 |
. . . . . 6
⊢
(SetCat‘1o) ∈ V |
| 3 | 2 | prid2 4743 |
. . . . 5
⊢
(SetCat‘1o) ∈ {𝐶,
(SetCat‘1o)} |
| 4 | | setc1oterm 49189 |
. . . . 5
⊢
(SetCat‘1o) ∈ TermCat |
| 5 | 3, 4 | elini 4179 |
. . . 4
⊢
(SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩
TermCat) |
| 6 | 5 | ne0ii 4324 |
. . 3
⊢ ({𝐶, (SetCat‘1o)}
∩ TermCat) ≠ ∅ |
| 7 | 6 | a1i 11 |
. 2
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ({𝐶, (SetCat‘1o)} ∩
TermCat) ≠ ∅) |
| 8 | 4 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ (SetCat‘1o) ∈ TermCat) |
| 9 | 8 | termccd 49178 |
. . . . . . . 8
⊢ (⊤
→ (SetCat‘1o) ∈ Cat) |
| 10 | 9 | mptru 1546 |
. . . . . . 7
⊢
(SetCat‘1o) ∈ Cat |
| 11 | 3, 10 | elini 4179 |
. . . . . 6
⊢
(SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩
Cat) |
| 12 | | oveq1 7420 |
. . . . . . . . 9
⊢ (𝑑 = (SetCat‘1o)
→ (𝑑 Func 𝐶) =
((SetCat‘1o) Func 𝐶)) |
| 13 | 12 | eleq2d 2819 |
. . . . . . . 8
⊢ (𝑑 = (SetCat‘1o)
→ (𝑓 ∈ (𝑑 Func 𝐶) ↔ 𝑓 ∈ ((SetCat‘1o) Func
𝐶))) |
| 14 | 13 | eubidv 2584 |
. . . . . . 7
⊢ (𝑑 = (SetCat‘1o)
→ (∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) ↔ ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func
𝐶))) |
| 15 | 14 | rspcv 3601 |
. . . . . 6
⊢
((SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)
→ (∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func
𝐶))) |
| 16 | 11, 15 | ax-mp 5 |
. . . . 5
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func
𝐶)) |
| 17 | | euen1b 9050 |
. . . . 5
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func
𝐶)) |
| 18 | 16, 17 | sylibr 234 |
. . . 4
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ((SetCat‘1o) Func
𝐶) ≈
1o) |
| 19 | | eqid 2734 |
. . . . . . . . 9
⊢
(Base‘(CatCat‘{𝐶, (SetCat‘1o)})) =
(Base‘(CatCat‘{𝐶,
(SetCat‘1o)})) |
| 20 | | prex 5417 |
. . . . . . . . . 10
⊢ {𝐶, (SetCat‘1o)}
∈ V |
| 21 | 20 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ {𝐶,
(SetCat‘1o)} ∈ V) |
| 22 | 1, 19, 21 | catcbas 18118 |
. . . . . . . 8
⊢ (⊤
→ (Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = ({𝐶, (SetCat‘1o)}
∩ Cat)) |
| 23 | 22 | mptru 1546 |
. . . . . . 7
⊢
(Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = ({𝐶, (SetCat‘1o)}
∩ Cat) |
| 24 | 23 | eqcomi 2743 |
. . . . . 6
⊢ ({𝐶, (SetCat‘1o)}
∩ Cat) = (Base‘(CatCat‘{𝐶,
(SetCat‘1o)})) |
| 25 | | eqid 2734 |
. . . . . 6
⊢ (Hom
‘(CatCat‘{𝐶,
(SetCat‘1o)})) = (Hom ‘(CatCat‘{𝐶,
(SetCat‘1o)})) |
| 26 | 1 | catccat 18125 |
. . . . . . . 8
⊢ ({𝐶, (SetCat‘1o)}
∈ V → (CatCat‘{𝐶, (SetCat‘1o)}) ∈
Cat) |
| 27 | 20, 26 | ax-mp 5 |
. . . . . . 7
⊢
(CatCat‘{𝐶,
(SetCat‘1o)}) ∈ Cat |
| 28 | 27 | a1i 11 |
. . . . . 6
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o →
(CatCat‘{𝐶,
(SetCat‘1o)}) ∈ Cat) |
| 29 | | euex 2575 |
. . . . . . . . . 10
⊢
(∃!𝑓 𝑓 ∈
((SetCat‘1o) Func 𝐶) → ∃𝑓 𝑓 ∈ ((SetCat‘1o) Func
𝐶)) |
| 30 | | funcrcl 17880 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈
((SetCat‘1o) Func 𝐶) → ((SetCat‘1o)
∈ Cat ∧ 𝐶 ∈
Cat)) |
| 31 | 30 | simprd 495 |
. . . . . . . . . . 11
⊢ (𝑓 ∈
((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat) |
| 32 | 31 | exlimiv 1929 |
. . . . . . . . . 10
⊢
(∃𝑓 𝑓 ∈
((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat) |
| 33 | 29, 32 | syl 17 |
. . . . . . . . 9
⊢
(∃!𝑓 𝑓 ∈
((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat) |
| 34 | 17, 33 | sylbi 217 |
. . . . . . . 8
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o → 𝐶 ∈ Cat) |
| 35 | | prid1g 4740 |
. . . . . . . 8
⊢ (𝐶 ∈ Cat → 𝐶 ∈ {𝐶,
(SetCat‘1o)}) |
| 36 | 34, 35 | syl 17 |
. . . . . . 7
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o → 𝐶 ∈ {𝐶,
(SetCat‘1o)}) |
| 37 | 36, 34 | elind 4180 |
. . . . . 6
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o → 𝐶 ∈ ({𝐶, (SetCat‘1o)} ∩
Cat)) |
| 38 | 24, 25, 28, 37 | istermo 18014 |
. . . . 5
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o → (𝐶 ∈
(TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔
∀𝑑 ∈ ({𝐶, (SetCat‘1o)}
∩ Cat)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶))) |
| 39 | 20 | a1i 11 |
. . . . . . . . 9
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ {𝐶,
(SetCat‘1o)} ∈ V) |
| 40 | | simpr 484 |
. . . . . . . . 9
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ 𝑑 ∈ ({𝐶, (SetCat‘1o)}
∩ Cat)) |
| 41 | 37 | adantr 480 |
. . . . . . . . 9
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ 𝐶 ∈ ({𝐶, (SetCat‘1o)}
∩ Cat)) |
| 42 | 1, 24, 39, 25, 40, 41 | catchom 18120 |
. . . . . . . 8
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ (𝑑(Hom
‘(CatCat‘{𝐶,
(SetCat‘1o)}))𝐶) = (𝑑 Func 𝐶)) |
| 43 | 42 | eleq2d 2819 |
. . . . . . 7
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ (𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶,
(SetCat‘1o)}))𝐶) ↔ 𝑓 ∈ (𝑑 Func 𝐶))) |
| 44 | 43 | eubidv 2584 |
. . . . . 6
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ (∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ ∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶))) |
| 45 | 44 | ralbidva 3163 |
. . . . 5
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o →
(∀𝑑 ∈ ({𝐶, (SetCat‘1o)}
∩ Cat)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩
Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶))) |
| 46 | 38, 45 | bitrd 279 |
. . . 4
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o → (𝐶 ∈
(TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔
∀𝑑 ∈ ({𝐶, (SetCat‘1o)}
∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶))) |
| 47 | 18, 46 | syl 17 |
. . 3
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → (𝐶 ∈ (TermO‘(CatCat‘{𝐶,
(SetCat‘1o)})) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩
Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶))) |
| 48 | 47 | ibir 268 |
. 2
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ (TermO‘(CatCat‘{𝐶,
(SetCat‘1o)}))) |
| 49 | 1, 7, 48 | termcterm2 49212 |
1
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ TermCat) |