Proof of Theorem termc2
Step | Hyp | Ref
| Expression |
1 | | eqid 2736 |
. 2
⊢
(CatCat‘{𝐶,
(SetCat‘1o)}) = (CatCat‘{𝐶,
(SetCat‘1o)}) |
2 | | fvex 6917 |
. . . . . 6
⊢
(SetCat‘1o) ∈ V |
3 | 2 | prid2 4761 |
. . . . 5
⊢
(SetCat‘1o) ∈ {𝐶,
(SetCat‘1o)} |
4 | | setc1oterm 49107 |
. . . . 5
⊢
(SetCat‘1o) ∈ TermCat |
5 | 3, 4 | elini 4198 |
. . . 4
⊢
(SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩
TermCat) |
6 | 5 | ne0ii 4343 |
. . 3
⊢ ({𝐶, (SetCat‘1o)}
∩ TermCat) ≠ ∅ |
7 | 6 | a1i 11 |
. 2
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ({𝐶, (SetCat‘1o)} ∩
TermCat) ≠ ∅) |
8 | 4 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ (SetCat‘1o) ∈ TermCat) |
9 | 8 | termccd 49099 |
. . . . . . . 8
⊢ (⊤
→ (SetCat‘1o) ∈ Cat) |
10 | 9 | mptru 1547 |
. . . . . . 7
⊢
(SetCat‘1o) ∈ Cat |
11 | 3, 10 | elini 4198 |
. . . . . 6
⊢
(SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩
Cat) |
12 | | oveq1 7436 |
. . . . . . . . 9
⊢ (𝑑 = (SetCat‘1o)
→ (𝑑 Func 𝐶) =
((SetCat‘1o) Func 𝐶)) |
13 | 12 | eleq2d 2826 |
. . . . . . . 8
⊢ (𝑑 = (SetCat‘1o)
→ (𝑓 ∈ (𝑑 Func 𝐶) ↔ 𝑓 ∈ ((SetCat‘1o) Func
𝐶))) |
14 | 13 | eubidv 2585 |
. . . . . . 7
⊢ (𝑑 = (SetCat‘1o)
→ (∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) ↔ ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func
𝐶))) |
15 | 14 | rspcv 3617 |
. . . . . 6
⊢
((SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)
→ (∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func
𝐶))) |
16 | 11, 15 | ax-mp 5 |
. . . . 5
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func
𝐶)) |
17 | | euen1b 9064 |
. . . . 5
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func
𝐶)) |
18 | 16, 17 | sylibr 234 |
. . . 4
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ((SetCat‘1o) Func
𝐶) ≈
1o) |
19 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘(CatCat‘{𝐶, (SetCat‘1o)})) =
(Base‘(CatCat‘{𝐶,
(SetCat‘1o)})) |
20 | | prex 5435 |
. . . . . . . . . 10
⊢ {𝐶, (SetCat‘1o)}
∈ V |
21 | 20 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ {𝐶,
(SetCat‘1o)} ∈ V) |
22 | 1, 19, 21 | catcbas 18142 |
. . . . . . . 8
⊢ (⊤
→ (Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = ({𝐶, (SetCat‘1o)}
∩ Cat)) |
23 | 22 | mptru 1547 |
. . . . . . 7
⊢
(Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = ({𝐶, (SetCat‘1o)}
∩ Cat) |
24 | 23 | eqcomi 2745 |
. . . . . 6
⊢ ({𝐶, (SetCat‘1o)}
∩ Cat) = (Base‘(CatCat‘{𝐶,
(SetCat‘1o)})) |
25 | | eqid 2736 |
. . . . . 6
⊢ (Hom
‘(CatCat‘{𝐶,
(SetCat‘1o)})) = (Hom ‘(CatCat‘{𝐶,
(SetCat‘1o)})) |
26 | 1 | catccat 18149 |
. . . . . . . 8
⊢ ({𝐶, (SetCat‘1o)}
∈ V → (CatCat‘{𝐶, (SetCat‘1o)}) ∈
Cat) |
27 | 20, 26 | ax-mp 5 |
. . . . . . 7
⊢
(CatCat‘{𝐶,
(SetCat‘1o)}) ∈ Cat |
28 | 27 | a1i 11 |
. . . . . 6
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o →
(CatCat‘{𝐶,
(SetCat‘1o)}) ∈ Cat) |
29 | | euex 2576 |
. . . . . . . . . 10
⊢
(∃!𝑓 𝑓 ∈
((SetCat‘1o) Func 𝐶) → ∃𝑓 𝑓 ∈ ((SetCat‘1o) Func
𝐶)) |
30 | | relfunc 17903 |
. . . . . . . . . . . . 13
⊢ Rel
((SetCat‘1o) Func 𝐶) |
31 | | 1st2ndbr 8063 |
. . . . . . . . . . . . 13
⊢ ((Rel
((SetCat‘1o) Func 𝐶) ∧ 𝑓 ∈ ((SetCat‘1o) Func
𝐶)) → (1st
‘𝑓)((SetCat‘1o) Func 𝐶)(2nd ‘𝑓)) |
32 | 30, 31 | mpan 690 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈
((SetCat‘1o) Func 𝐶) → (1st ‘𝑓)((SetCat‘1o)
Func 𝐶)(2nd
‘𝑓)) |
33 | 32 | funcrcl3 48886 |
. . . . . . . . . . 11
⊢ (𝑓 ∈
((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat) |
34 | 33 | exlimiv 1930 |
. . . . . . . . . 10
⊢
(∃𝑓 𝑓 ∈
((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat) |
35 | 29, 34 | syl 17 |
. . . . . . . . 9
⊢
(∃!𝑓 𝑓 ∈
((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat) |
36 | 17, 35 | sylbi 217 |
. . . . . . . 8
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o → 𝐶 ∈ Cat) |
37 | | prid1g 4758 |
. . . . . . . 8
⊢ (𝐶 ∈ Cat → 𝐶 ∈ {𝐶,
(SetCat‘1o)}) |
38 | 36, 37 | syl 17 |
. . . . . . 7
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o → 𝐶 ∈ {𝐶,
(SetCat‘1o)}) |
39 | 38, 36 | elind 4199 |
. . . . . 6
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o → 𝐶 ∈ ({𝐶, (SetCat‘1o)} ∩
Cat)) |
40 | 24, 25, 28, 39 | istermo 18038 |
. . . . 5
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o → (𝐶 ∈
(TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔
∀𝑑 ∈ ({𝐶, (SetCat‘1o)}
∩ Cat)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶))) |
41 | 20 | a1i 11 |
. . . . . . . . 9
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ {𝐶,
(SetCat‘1o)} ∈ V) |
42 | | simpr 484 |
. . . . . . . . 9
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ 𝑑 ∈ ({𝐶, (SetCat‘1o)}
∩ Cat)) |
43 | 39 | adantr 480 |
. . . . . . . . 9
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ 𝐶 ∈ ({𝐶, (SetCat‘1o)}
∩ Cat)) |
44 | 1, 24, 41, 25, 42, 43 | catchom 18144 |
. . . . . . . 8
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ (𝑑(Hom
‘(CatCat‘{𝐶,
(SetCat‘1o)}))𝐶) = (𝑑 Func 𝐶)) |
45 | 44 | eleq2d 2826 |
. . . . . . 7
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ (𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶,
(SetCat‘1o)}))𝐶) ↔ 𝑓 ∈ (𝑑 Func 𝐶))) |
46 | 45 | eubidv 2585 |
. . . . . 6
⊢
((((SetCat‘1o) Func 𝐶) ≈ 1o ∧ 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
→ (∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ ∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶))) |
47 | 46 | ralbidva 3175 |
. . . . 5
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o →
(∀𝑑 ∈ ({𝐶, (SetCat‘1o)}
∩ Cat)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩
Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶))) |
48 | 40, 47 | bitrd 279 |
. . . 4
⊢
(((SetCat‘1o) Func 𝐶) ≈ 1o → (𝐶 ∈
(TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔
∀𝑑 ∈ ({𝐶, (SetCat‘1o)}
∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶))) |
49 | 18, 48 | syl 17 |
. . 3
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → (𝐶 ∈ (TermO‘(CatCat‘{𝐶,
(SetCat‘1o)})) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩
Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶))) |
50 | 49 | ibir 268 |
. 2
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ (TermO‘(CatCat‘{𝐶,
(SetCat‘1o)}))) |
51 | 1, 7, 50 | termcterm2 49119 |
1
⊢
(∀𝑑 ∈
({𝐶,
(SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ TermCat) |