Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termc2 Structured version   Visualization version   GIF version

Theorem termc2 49487
Description: If there exists a unique functor from both the category itself and the trivial category, then the category is terminal. Note that the converse also holds, so that it is a biconditional. See the proof of termc 49488 for hints. See also eufunc 49491 and euendfunc2 49496 for some insights on why two categories are sufficient. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
termc2 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ TermCat)
Distinct variable group:   𝐶,𝑑,𝑓

Proof of Theorem termc2
StepHypRef Expression
1 eqid 2730 . 2 (CatCat‘{𝐶, (SetCat‘1o)}) = (CatCat‘{𝐶, (SetCat‘1o)})
2 fvex 6873 . . . . . 6 (SetCat‘1o) ∈ V
32prid2 4729 . . . . 5 (SetCat‘1o) ∈ {𝐶, (SetCat‘1o)}
4 setc1oterm 49460 . . . . 5 (SetCat‘1o) ∈ TermCat
53, 4elini 4164 . . . 4 (SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩ TermCat)
65ne0ii 4309 . . 3 ({𝐶, (SetCat‘1o)} ∩ TermCat) ≠ ∅
76a1i 11 . 2 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ({𝐶, (SetCat‘1o)} ∩ TermCat) ≠ ∅)
84a1i 11 . . . . . . . . 9 (⊤ → (SetCat‘1o) ∈ TermCat)
98termccd 49448 . . . . . . . 8 (⊤ → (SetCat‘1o) ∈ Cat)
109mptru 1547 . . . . . . 7 (SetCat‘1o) ∈ Cat
113, 10elini 4164 . . . . . 6 (SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)
12 oveq1 7396 . . . . . . . . 9 (𝑑 = (SetCat‘1o) → (𝑑 Func 𝐶) = ((SetCat‘1o) Func 𝐶))
1312eleq2d 2815 . . . . . . . 8 (𝑑 = (SetCat‘1o) → (𝑓 ∈ (𝑑 Func 𝐶) ↔ 𝑓 ∈ ((SetCat‘1o) Func 𝐶)))
1413eubidv 2580 . . . . . . 7 (𝑑 = (SetCat‘1o) → (∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) ↔ ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶)))
1514rspcv 3587 . . . . . 6 ((SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩ Cat) → (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶)))
1611, 15ax-mp 5 . . . . 5 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶))
17 euen1b 9001 . . . . 5 (((SetCat‘1o) Func 𝐶) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶))
1816, 17sylibr 234 . . . 4 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ((SetCat‘1o) Func 𝐶) ≈ 1o)
19 eqid 2730 . . . . . . . . 9 (Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = (Base‘(CatCat‘{𝐶, (SetCat‘1o)}))
20 prex 5394 . . . . . . . . . 10 {𝐶, (SetCat‘1o)} ∈ V
2120a1i 11 . . . . . . . . 9 (⊤ → {𝐶, (SetCat‘1o)} ∈ V)
221, 19, 21catcbas 18069 . . . . . . . 8 (⊤ → (Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = ({𝐶, (SetCat‘1o)} ∩ Cat))
2322mptru 1547 . . . . . . 7 (Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = ({𝐶, (SetCat‘1o)} ∩ Cat)
2423eqcomi 2739 . . . . . 6 ({𝐶, (SetCat‘1o)} ∩ Cat) = (Base‘(CatCat‘{𝐶, (SetCat‘1o)}))
25 eqid 2730 . . . . . 6 (Hom ‘(CatCat‘{𝐶, (SetCat‘1o)})) = (Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))
261catccat 18076 . . . . . . . 8 ({𝐶, (SetCat‘1o)} ∈ V → (CatCat‘{𝐶, (SetCat‘1o)}) ∈ Cat)
2720, 26ax-mp 5 . . . . . . 7 (CatCat‘{𝐶, (SetCat‘1o)}) ∈ Cat
2827a1i 11 . . . . . 6 (((SetCat‘1o) Func 𝐶) ≈ 1o → (CatCat‘{𝐶, (SetCat‘1o)}) ∈ Cat)
29 euex 2571 . . . . . . . . . 10 (∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶) → ∃𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶))
30 funcrcl 17831 . . . . . . . . . . . 12 (𝑓 ∈ ((SetCat‘1o) Func 𝐶) → ((SetCat‘1o) ∈ Cat ∧ 𝐶 ∈ Cat))
3130simprd 495 . . . . . . . . . . 11 (𝑓 ∈ ((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat)
3231exlimiv 1930 . . . . . . . . . 10 (∃𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat)
3329, 32syl 17 . . . . . . . . 9 (∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat)
3417, 33sylbi 217 . . . . . . . 8 (((SetCat‘1o) Func 𝐶) ≈ 1o𝐶 ∈ Cat)
35 prid1g 4726 . . . . . . . 8 (𝐶 ∈ Cat → 𝐶 ∈ {𝐶, (SetCat‘1o)})
3634, 35syl 17 . . . . . . 7 (((SetCat‘1o) Func 𝐶) ≈ 1o𝐶 ∈ {𝐶, (SetCat‘1o)})
3736, 34elind 4165 . . . . . 6 (((SetCat‘1o) Func 𝐶) ≈ 1o𝐶 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
3824, 25, 28, 37istermo 17965 . . . . 5 (((SetCat‘1o) Func 𝐶) ≈ 1o → (𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶)))
3920a1i 11 . . . . . . . . 9 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → {𝐶, (SetCat‘1o)} ∈ V)
40 simpr 484 . . . . . . . . 9 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
4137adantr 480 . . . . . . . . 9 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → 𝐶 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
421, 24, 39, 25, 40, 41catchom 18071 . . . . . . . 8 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) = (𝑑 Func 𝐶))
4342eleq2d 2815 . . . . . . 7 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → (𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ 𝑓 ∈ (𝑑 Func 𝐶)))
4443eubidv 2580 . . . . . 6 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → (∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ ∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4544ralbidva 3155 . . . . 5 (((SetCat‘1o) Func 𝐶) ≈ 1o → (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4638, 45bitrd 279 . . . 4 (((SetCat‘1o) Func 𝐶) ≈ 1o → (𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4718, 46syl 17 . . 3 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → (𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4847ibir 268 . 2 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})))
491, 7, 48termcterm2 49483 1 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ TermCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wex 1779  wcel 2109  ∃!weu 2562  wne 2926  wral 3045  Vcvv 3450  cin 3915  c0 4298  {cpr 4593   class class class wbr 5109  cfv 6513  (class class class)co 7389  1oc1o 8429  cen 8917  Basecbs 17185  Hom chom 17237  Catccat 17631   Func cfunc 17822  TermOctermo 17950  SetCatcsetc 18043  CatCatccatc 18066  TermCatctermc 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-sect 17715  df-inv 17716  df-iso 17717  df-cic 17764  df-func 17826  df-idfu 17827  df-cofu 17828  df-full 17874  df-fth 17875  df-termo 17953  df-setc 18044  df-catc 18067  df-thinc 49387  df-termc 49442
This theorem is referenced by:  termc  49488
  Copyright terms: Public domain W3C validator