Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termc2 Structured version   Visualization version   GIF version

Theorem termc2 49264
Description: If there exists a unique functor from both the category itself and the trivial category, then the category is terminal. Note that the converse also holds, so that it is a biconditional. See the proof of termc 49265 for hints. See also eufunc 49268 and euendfunc2 49273 for some insights on why two categories are sufficient. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
termc2 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ TermCat)
Distinct variable group:   𝐶,𝑑,𝑓

Proof of Theorem termc2
StepHypRef Expression
1 eqid 2734 . 2 (CatCat‘{𝐶, (SetCat‘1o)}) = (CatCat‘{𝐶, (SetCat‘1o)})
2 fvex 6886 . . . . . 6 (SetCat‘1o) ∈ V
32prid2 4737 . . . . 5 (SetCat‘1o) ∈ {𝐶, (SetCat‘1o)}
4 setc1oterm 49237 . . . . 5 (SetCat‘1o) ∈ TermCat
53, 4elini 4172 . . . 4 (SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩ TermCat)
65ne0ii 4317 . . 3 ({𝐶, (SetCat‘1o)} ∩ TermCat) ≠ ∅
76a1i 11 . 2 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ({𝐶, (SetCat‘1o)} ∩ TermCat) ≠ ∅)
84a1i 11 . . . . . . . . 9 (⊤ → (SetCat‘1o) ∈ TermCat)
98termccd 49226 . . . . . . . 8 (⊤ → (SetCat‘1o) ∈ Cat)
109mptru 1546 . . . . . . 7 (SetCat‘1o) ∈ Cat
113, 10elini 4172 . . . . . 6 (SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)
12 oveq1 7407 . . . . . . . . 9 (𝑑 = (SetCat‘1o) → (𝑑 Func 𝐶) = ((SetCat‘1o) Func 𝐶))
1312eleq2d 2819 . . . . . . . 8 (𝑑 = (SetCat‘1o) → (𝑓 ∈ (𝑑 Func 𝐶) ↔ 𝑓 ∈ ((SetCat‘1o) Func 𝐶)))
1413eubidv 2584 . . . . . . 7 (𝑑 = (SetCat‘1o) → (∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) ↔ ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶)))
1514rspcv 3595 . . . . . 6 ((SetCat‘1o) ∈ ({𝐶, (SetCat‘1o)} ∩ Cat) → (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶)))
1611, 15ax-mp 5 . . . . 5 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶))
17 euen1b 9037 . . . . 5 (((SetCat‘1o) Func 𝐶) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶))
1816, 17sylibr 234 . . . 4 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → ((SetCat‘1o) Func 𝐶) ≈ 1o)
19 eqid 2734 . . . . . . . . 9 (Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = (Base‘(CatCat‘{𝐶, (SetCat‘1o)}))
20 prex 5405 . . . . . . . . . 10 {𝐶, (SetCat‘1o)} ∈ V
2120a1i 11 . . . . . . . . 9 (⊤ → {𝐶, (SetCat‘1o)} ∈ V)
221, 19, 21catcbas 18101 . . . . . . . 8 (⊤ → (Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = ({𝐶, (SetCat‘1o)} ∩ Cat))
2322mptru 1546 . . . . . . 7 (Base‘(CatCat‘{𝐶, (SetCat‘1o)})) = ({𝐶, (SetCat‘1o)} ∩ Cat)
2423eqcomi 2743 . . . . . 6 ({𝐶, (SetCat‘1o)} ∩ Cat) = (Base‘(CatCat‘{𝐶, (SetCat‘1o)}))
25 eqid 2734 . . . . . 6 (Hom ‘(CatCat‘{𝐶, (SetCat‘1o)})) = (Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))
261catccat 18108 . . . . . . . 8 ({𝐶, (SetCat‘1o)} ∈ V → (CatCat‘{𝐶, (SetCat‘1o)}) ∈ Cat)
2720, 26ax-mp 5 . . . . . . 7 (CatCat‘{𝐶, (SetCat‘1o)}) ∈ Cat
2827a1i 11 . . . . . 6 (((SetCat‘1o) Func 𝐶) ≈ 1o → (CatCat‘{𝐶, (SetCat‘1o)}) ∈ Cat)
29 euex 2575 . . . . . . . . . 10 (∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶) → ∃𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶))
30 funcrcl 17863 . . . . . . . . . . . 12 (𝑓 ∈ ((SetCat‘1o) Func 𝐶) → ((SetCat‘1o) ∈ Cat ∧ 𝐶 ∈ Cat))
3130simprd 495 . . . . . . . . . . 11 (𝑓 ∈ ((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat)
3231exlimiv 1929 . . . . . . . . . 10 (∃𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat)
3329, 32syl 17 . . . . . . . . 9 (∃!𝑓 𝑓 ∈ ((SetCat‘1o) Func 𝐶) → 𝐶 ∈ Cat)
3417, 33sylbi 217 . . . . . . . 8 (((SetCat‘1o) Func 𝐶) ≈ 1o𝐶 ∈ Cat)
35 prid1g 4734 . . . . . . . 8 (𝐶 ∈ Cat → 𝐶 ∈ {𝐶, (SetCat‘1o)})
3634, 35syl 17 . . . . . . 7 (((SetCat‘1o) Func 𝐶) ≈ 1o𝐶 ∈ {𝐶, (SetCat‘1o)})
3736, 34elind 4173 . . . . . 6 (((SetCat‘1o) Func 𝐶) ≈ 1o𝐶 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
3824, 25, 28, 37istermo 17997 . . . . 5 (((SetCat‘1o) Func 𝐶) ≈ 1o → (𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶)))
3920a1i 11 . . . . . . . . 9 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → {𝐶, (SetCat‘1o)} ∈ V)
40 simpr 484 . . . . . . . . 9 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → 𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
4137adantr 480 . . . . . . . . 9 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → 𝐶 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat))
421, 24, 39, 25, 40, 41catchom 18103 . . . . . . . 8 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) = (𝑑 Func 𝐶))
4342eleq2d 2819 . . . . . . 7 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → (𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ 𝑓 ∈ (𝑑 Func 𝐶)))
4443eubidv 2584 . . . . . 6 ((((SetCat‘1o) Func 𝐶) ≈ 1o𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)) → (∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ ∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4544ralbidva 3159 . . . . 5 (((SetCat‘1o) Func 𝐶) ≈ 1o → (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘(CatCat‘{𝐶, (SetCat‘1o)}))𝐶) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4638, 45bitrd 279 . . . 4 (((SetCat‘1o) Func 𝐶) ≈ 1o → (𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4718, 46syl 17 . . 3 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → (𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})) ↔ ∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)))
4847ibir 268 . 2 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ (TermO‘(CatCat‘{𝐶, (SetCat‘1o)})))
491, 7, 48termcterm2 49260 1 (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ TermCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wtru 1540  wex 1778  wcel 2107  ∃!weu 2566  wne 2931  wral 3050  Vcvv 3457  cin 3923  c0 4306  {cpr 4601   class class class wbr 5117  cfv 6528  (class class class)co 7400  1oc1o 8468  cen 8951  Basecbs 17215  Hom chom 17269  Catccat 17663   Func cfunc 17854  TermOctermo 17982  SetCatcsetc 18075  CatCatccatc 18098  TermCatctermc 49219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-map 8837  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-fz 13515  df-struct 17153  df-slot 17188  df-ndx 17200  df-base 17216  df-hom 17282  df-cco 17283  df-cat 17667  df-cid 17668  df-sect 17747  df-inv 17748  df-iso 17749  df-cic 17796  df-func 17858  df-idfu 17859  df-cofu 17860  df-full 17906  df-fth 17907  df-termo 17985  df-setc 18076  df-catc 18099  df-thinc 49167  df-termc 49220
This theorem is referenced by:  termc  49265
  Copyright terms: Public domain W3C validator