| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isinito3 | Structured version Visualization version GIF version | ||
| Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| isinito2.1 | ⊢ 1 = (SetCat‘1o) |
| isinito2.f | ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) |
| Ref | Expression |
|---|---|
| isinito3 | ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶UP 1 )∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relup 48966 | . . 3 ⊢ Rel (𝐹(𝐶UP 1 )∅) | |
| 2 | isinito2.1 | . . . . 5 ⊢ 1 = (SetCat‘1o) | |
| 3 | isinito2.f | . . . . 5 ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) | |
| 4 | 2, 3 | isinito2 49197 | . . . 4 ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶UP 1 )∅)∅) |
| 5 | 4 | biimpi 216 | . . 3 ⊢ (𝐼 ∈ (InitO‘𝐶) → 𝐼(𝐹(𝐶UP 1 )∅)∅) |
| 6 | releldm 5935 | . . 3 ⊢ ((Rel (𝐹(𝐶UP 1 )∅) ∧ 𝐼(𝐹(𝐶UP 1 )∅)∅) → 𝐼 ∈ dom (𝐹(𝐶UP 1 )∅)) | |
| 7 | 1, 5, 6 | sylancr 587 | . 2 ⊢ (𝐼 ∈ (InitO‘𝐶) → 𝐼 ∈ dom (𝐹(𝐶UP 1 )∅)) |
| 8 | releldmb 5937 | . . . 4 ⊢ (Rel (𝐹(𝐶UP 1 )∅) → (𝐼 ∈ dom (𝐹(𝐶UP 1 )∅) ↔ ∃𝑦 𝐼(𝐹(𝐶UP 1 )∅)𝑦)) | |
| 9 | 1, 8 | ax-mp 5 | . . 3 ⊢ (𝐼 ∈ dom (𝐹(𝐶UP 1 )∅) ↔ ∃𝑦 𝐼(𝐹(𝐶UP 1 )∅)𝑦) |
| 10 | id 22 | . . . . . 6 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 𝐼(𝐹(𝐶UP 1 )∅)𝑦) | |
| 11 | 10 | up1st2nd 48968 | . . . . . . . . 9 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 𝐼(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶UP 1 )∅)𝑦) |
| 12 | 2 | setc1ohomfval 49191 | . . . . . . . . 9 ⊢ {〈∅, ∅, 1o〉} = (Hom ‘ 1 ) |
| 13 | 11, 12 | uprcl5 48975 | . . . . . . . 8 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 𝑦 ∈ (∅{〈∅, ∅, 1o〉} ((1st ‘𝐹)‘𝐼))) |
| 14 | eqid 2734 | . . . . . . . . . . 11 ⊢ ( 1 Δfunc𝐶) = ( 1 Δfunc𝐶) | |
| 15 | setc1oterm 49189 | . . . . . . . . . . . . . 14 ⊢ (SetCat‘1o) ∈ TermCat | |
| 16 | 2, 15 | eqeltri 2829 | . . . . . . . . . . . . 13 ⊢ 1 ∈ TermCat |
| 17 | 16 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 1 ∈ TermCat) |
| 18 | 17 | termccd 49178 | . . . . . . . . . . 11 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 1 ∈ Cat) |
| 19 | 11 | uprcl2 48972 | . . . . . . . . . . . 12 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → (1st ‘𝐹)(𝐶 Func 1 )(2nd ‘𝐹)) |
| 20 | 19 | funcrcl2 48937 | . . . . . . . . . . 11 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 𝐶 ∈ Cat) |
| 21 | 2 | setc1obas 49190 | . . . . . . . . . . 11 ⊢ 1o = (Base‘ 1 ) |
| 22 | 11, 21 | uprcl3 48973 | . . . . . . . . . . 11 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → ∅ ∈ 1o) |
| 23 | eqid 2734 | . . . . . . . . . . 11 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 24 | 11, 23 | uprcl4 48974 | . . . . . . . . . . 11 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 𝐼 ∈ (Base‘𝐶)) |
| 25 | 14, 18, 20, 21, 22, 3, 23, 24 | diag11 18259 | . . . . . . . . . 10 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → ((1st ‘𝐹)‘𝐼) = ∅) |
| 26 | 25 | oveq2d 7429 | . . . . . . . . 9 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → (∅{〈∅, ∅, 1o〉} ((1st ‘𝐹)‘𝐼)) = (∅{〈∅, ∅, 1o〉}∅)) |
| 27 | 1oex 8498 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
| 28 | 27 | ovsn2 48745 | . . . . . . . . 9 ⊢ (∅{〈∅, ∅, 1o〉}∅) = 1o |
| 29 | 26, 28 | eqtrdi 2785 | . . . . . . . 8 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → (∅{〈∅, ∅, 1o〉} ((1st ‘𝐹)‘𝐼)) = 1o) |
| 30 | 13, 29 | eleqtrd 2835 | . . . . . . 7 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 𝑦 ∈ 1o) |
| 31 | el1o 8515 | . . . . . . 7 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
| 32 | 30, 31 | sylib 218 | . . . . . 6 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 𝑦 = ∅) |
| 33 | 10, 32 | breqtrd 5149 | . . . . 5 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 𝐼(𝐹(𝐶UP 1 )∅)∅) |
| 34 | 33, 4 | sylibr 234 | . . . 4 ⊢ (𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 𝐼 ∈ (InitO‘𝐶)) |
| 35 | 34 | exlimiv 1929 | . . 3 ⊢ (∃𝑦 𝐼(𝐹(𝐶UP 1 )∅)𝑦 → 𝐼 ∈ (InitO‘𝐶)) |
| 36 | 9, 35 | sylbi 217 | . 2 ⊢ (𝐼 ∈ dom (𝐹(𝐶UP 1 )∅) → 𝐼 ∈ (InitO‘𝐶)) |
| 37 | 7, 36 | impbii 209 | 1 ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶UP 1 )∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∅c0 4313 {csn 4606 〈cotp 4614 class class class wbr 5123 dom cdm 5665 Rel wrel 5670 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 2nd c2nd 7995 1oc1o 8481 Basecbs 17230 InitOcinito 17998 SetCatcsetc 18092 Δfunccdiag 18228 UPcup 48957 TermCatctermc 49171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-hom 17298 df-cco 17299 df-cat 17683 df-cid 17684 df-func 17875 df-nat 17963 df-fuc 17964 df-inito 18001 df-setc 18093 df-xpc 18188 df-1stf 18189 df-curf 18230 df-diag 18232 df-up 48958 df-thinc 49119 df-termc 49172 |
| This theorem is referenced by: dfinito4 49199 |
| Copyright terms: Public domain | W3C validator |