| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isinito3 | Structured version Visualization version GIF version | ||
| Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| isinito2.1 | ⊢ 1 = (SetCat‘1o) |
| isinito2.f | ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) |
| Ref | Expression |
|---|---|
| isinito3 | ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relup 49156 | . . 3 ⊢ Rel (𝐹(𝐶 UP 1 )∅) | |
| 2 | isinito2.1 | . . . . 5 ⊢ 1 = (SetCat‘1o) | |
| 3 | isinito2.f | . . . . 5 ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) | |
| 4 | 2, 3 | isinito2 49468 | . . . 4 ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅) |
| 5 | 4 | biimpi 216 | . . 3 ⊢ (𝐼 ∈ (InitO‘𝐶) → 𝐼(𝐹(𝐶 UP 1 )∅)∅) |
| 6 | releldm 5910 | . . 3 ⊢ ((Rel (𝐹(𝐶 UP 1 )∅) ∧ 𝐼(𝐹(𝐶 UP 1 )∅)∅) → 𝐼 ∈ dom (𝐹(𝐶 UP 1 )∅)) | |
| 7 | 1, 5, 6 | sylancr 587 | . 2 ⊢ (𝐼 ∈ (InitO‘𝐶) → 𝐼 ∈ dom (𝐹(𝐶 UP 1 )∅)) |
| 8 | releldmb 5912 | . . . 4 ⊢ (Rel (𝐹(𝐶 UP 1 )∅) → (𝐼 ∈ dom (𝐹(𝐶 UP 1 )∅) ↔ ∃𝑦 𝐼(𝐹(𝐶 UP 1 )∅)𝑦)) | |
| 9 | 1, 8 | ax-mp 5 | . . 3 ⊢ (𝐼 ∈ dom (𝐹(𝐶 UP 1 )∅) ↔ ∃𝑦 𝐼(𝐹(𝐶 UP 1 )∅)𝑦) |
| 10 | id 22 | . . . . . 6 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 𝐼(𝐹(𝐶 UP 1 )∅)𝑦) | |
| 11 | 10 | up1st2nd 49158 | . . . . . . . . 9 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 𝐼(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶 UP 1 )∅)𝑦) |
| 12 | 2 | setc1ohomfval 49462 | . . . . . . . . 9 ⊢ {〈∅, ∅, 1o〉} = (Hom ‘ 1 ) |
| 13 | 11, 12 | uprcl5 49165 | . . . . . . . 8 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 𝑦 ∈ (∅{〈∅, ∅, 1o〉} ((1st ‘𝐹)‘𝐼))) |
| 14 | eqid 2730 | . . . . . . . . . . 11 ⊢ ( 1 Δfunc𝐶) = ( 1 Δfunc𝐶) | |
| 15 | setc1oterm 49460 | . . . . . . . . . . . . . 14 ⊢ (SetCat‘1o) ∈ TermCat | |
| 16 | 2, 15 | eqeltri 2825 | . . . . . . . . . . . . 13 ⊢ 1 ∈ TermCat |
| 17 | 16 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 1 ∈ TermCat) |
| 18 | 17 | termccd 49448 | . . . . . . . . . . 11 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 1 ∈ Cat) |
| 19 | 11 | uprcl2 49162 | . . . . . . . . . . . 12 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → (1st ‘𝐹)(𝐶 Func 1 )(2nd ‘𝐹)) |
| 20 | 19 | funcrcl2 49056 | . . . . . . . . . . 11 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 𝐶 ∈ Cat) |
| 21 | 2 | setc1obas 49461 | . . . . . . . . . . 11 ⊢ 1o = (Base‘ 1 ) |
| 22 | 11, 21 | uprcl3 49163 | . . . . . . . . . . 11 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → ∅ ∈ 1o) |
| 23 | eqid 2730 | . . . . . . . . . . 11 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 24 | 11, 23 | uprcl4 49164 | . . . . . . . . . . 11 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 𝐼 ∈ (Base‘𝐶)) |
| 25 | 14, 18, 20, 21, 22, 3, 23, 24 | diag11 18210 | . . . . . . . . . 10 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → ((1st ‘𝐹)‘𝐼) = ∅) |
| 26 | 25 | oveq2d 7405 | . . . . . . . . 9 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → (∅{〈∅, ∅, 1o〉} ((1st ‘𝐹)‘𝐼)) = (∅{〈∅, ∅, 1o〉}∅)) |
| 27 | 1oex 8446 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
| 28 | 27 | ovsn2 48837 | . . . . . . . . 9 ⊢ (∅{〈∅, ∅, 1o〉}∅) = 1o |
| 29 | 26, 28 | eqtrdi 2781 | . . . . . . . 8 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → (∅{〈∅, ∅, 1o〉} ((1st ‘𝐹)‘𝐼)) = 1o) |
| 30 | 13, 29 | eleqtrd 2831 | . . . . . . 7 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 𝑦 ∈ 1o) |
| 31 | el1o 8461 | . . . . . . 7 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
| 32 | 30, 31 | sylib 218 | . . . . . 6 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 𝑦 = ∅) |
| 33 | 10, 32 | breqtrd 5135 | . . . . 5 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 𝐼(𝐹(𝐶 UP 1 )∅)∅) |
| 34 | 33, 4 | sylibr 234 | . . . 4 ⊢ (𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 𝐼 ∈ (InitO‘𝐶)) |
| 35 | 34 | exlimiv 1930 | . . 3 ⊢ (∃𝑦 𝐼(𝐹(𝐶 UP 1 )∅)𝑦 → 𝐼 ∈ (InitO‘𝐶)) |
| 36 | 9, 35 | sylbi 217 | . 2 ⊢ (𝐼 ∈ dom (𝐹(𝐶 UP 1 )∅) → 𝐼 ∈ (InitO‘𝐶)) |
| 37 | 7, 36 | impbii 209 | 1 ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4298 {csn 4591 〈cotp 4599 class class class wbr 5109 dom cdm 5640 Rel wrel 5645 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 1oc1o 8429 Basecbs 17185 InitOcinito 17949 SetCatcsetc 18043 Δfunccdiag 18179 UP cup 49146 TermCatctermc 49441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-ot 4600 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-func 17826 df-nat 17914 df-fuc 17915 df-inito 17952 df-setc 18044 df-xpc 18139 df-1stf 18140 df-curf 18181 df-diag 18183 df-up 49147 df-thinc 49387 df-termc 49442 |
| This theorem is referenced by: dfinito4 49470 isinito4 49516 |
| Copyright terms: Public domain | W3C validator |