| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcterm2 | Structured version Visualization version GIF version | ||
| Description: A terminal object of the category of small categories is a terminal category. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcterm.e | ⊢ 𝐸 = (CatCat‘𝑈) |
| termcterm2. | ⊢ (𝜑 → (𝑈 ∩ TermCat) ≠ ∅) |
| termcterm2.t | ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) |
| Ref | Expression |
|---|---|
| termcterm2 | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcterm2. | . . 3 ⊢ (𝜑 → (𝑈 ∩ TermCat) ≠ ∅) | |
| 2 | n0 4333 | . . 3 ⊢ ((𝑈 ∩ TermCat) ≠ ∅ ↔ ∃𝑑 𝑑 ∈ (𝑈 ∩ TermCat)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑑 𝑑 ∈ (𝑈 ∩ TermCat)) |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (𝑈 ∩ TermCat)) | |
| 5 | 4 | elin2d 4185 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ TermCat) |
| 6 | 5 | termcthind 49177 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ ThinCat) |
| 7 | termcterm.e | . . . . 5 ⊢ 𝐸 = (CatCat‘𝑈) | |
| 8 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 9 | termcterm2.t | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) | |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ (TermO‘𝐸)) |
| 11 | 8 | termoo2 48984 | . . . . . . 7 ⊢ (𝐶 ∈ (TermO‘𝐸) → 𝐶 ∈ (Base‘𝐸)) |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ (Base‘𝐸)) |
| 13 | 7, 8 | elbasfv 17236 | . . . . . 6 ⊢ (𝐶 ∈ (Base‘𝐸) → 𝑈 ∈ V) |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑈 ∈ V) |
| 15 | 4 | elin1d 4184 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ 𝑈) |
| 16 | 5 | termccd 49178 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ Cat) |
| 17 | 15, 16 | elind 4180 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (𝑈 ∩ Cat)) |
| 18 | 7, 8, 14 | catcbas 18118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐸) = (𝑈 ∩ Cat)) |
| 19 | 17, 18 | eleqtrrd 2836 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (Base‘𝐸)) |
| 20 | termorcl 18008 | . . . . . . 7 ⊢ (𝐶 ∈ (TermO‘𝐸) → 𝐸 ∈ Cat) | |
| 21 | 10, 20 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐸 ∈ Cat) |
| 22 | 7, 14, 15, 5 | termcterm 49211 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (TermO‘𝐸)) |
| 23 | 21, 10, 22 | termoeu1w 18036 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶( ≃𝑐 ‘𝐸)𝑑) |
| 24 | 7, 8, 14, 12, 19, 23 | thincciso4 49158 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝐶 ∈ ThinCat ↔ 𝑑 ∈ ThinCat)) |
| 25 | 6, 24 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ ThinCat) |
| 26 | 21, 10, 22 | termoeu1 18035 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → ∃!𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) |
| 27 | euex 2575 | . . . . . 6 ⊢ (∃!𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑) → ∃𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → ∃𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) |
| 29 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 30 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝑑) = (Base‘𝑑) | |
| 31 | eqid 2734 | . . . . . . . 8 ⊢ (Iso‘𝐸) = (Iso‘𝐸) | |
| 32 | 7, 8, 29, 30, 14, 12, 19, 31 | catciso 18128 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝑓 ∈ (𝐶(Iso‘𝐸)𝑑) ↔ (𝑓 ∈ ((𝐶 Full 𝑑) ∩ (𝐶 Faith 𝑑)) ∧ (1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑)))) |
| 33 | 32 | simplbda 499 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) ∧ 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) → (1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑)) |
| 34 | fvex 6899 | . . . . . . 7 ⊢ (Base‘𝐶) ∈ V | |
| 35 | 34 | f1oen 8995 | . . . . . 6 ⊢ ((1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑) → (Base‘𝐶) ≈ (Base‘𝑑)) |
| 36 | 33, 35 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) ∧ 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) → (Base‘𝐶) ≈ (Base‘𝑑)) |
| 37 | 28, 36 | exlimddv 1934 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐶) ≈ (Base‘𝑑)) |
| 38 | 30 | istermc3 49175 | . . . . . 6 ⊢ (𝑑 ∈ TermCat ↔ (𝑑 ∈ ThinCat ∧ (Base‘𝑑) ≈ 1o)) |
| 39 | 5, 38 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝑑 ∈ ThinCat ∧ (Base‘𝑑) ≈ 1o)) |
| 40 | 39 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝑑) ≈ 1o) |
| 41 | entr 9028 | . . . 4 ⊢ (((Base‘𝐶) ≈ (Base‘𝑑) ∧ (Base‘𝑑) ≈ 1o) → (Base‘𝐶) ≈ 1o) | |
| 42 | 37, 40, 41 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐶) ≈ 1o) |
| 43 | 29 | istermc3 49175 | . . 3 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ (Base‘𝐶) ≈ 1o)) |
| 44 | 25, 42, 43 | sylanbrc 583 | . 2 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ TermCat) |
| 45 | 3, 44 | exlimddv 1934 | 1 ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃!weu 2566 ≠ wne 2931 Vcvv 3463 ∩ cin 3930 ∅c0 4313 class class class wbr 5123 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 1oc1o 8481 ≈ cen 8964 Basecbs 17230 Catccat 17679 Isociso 17762 Full cful 17921 Faith cfth 17922 TermOctermo 17999 CatCatccatc 18115 ThinCatcthinc 49118 TermCatctermc 49171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-hom 17298 df-cco 17299 df-cat 17683 df-cid 17684 df-sect 17763 df-inv 17764 df-iso 17765 df-cic 17812 df-func 17875 df-idfu 17876 df-cofu 17877 df-full 17923 df-fth 17924 df-termo 18002 df-catc 18116 df-thinc 49119 df-termc 49172 |
| This theorem is referenced by: termcterm3 49213 termcciso 49214 termc2 49216 |
| Copyright terms: Public domain | W3C validator |