| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcterm2 | Structured version Visualization version GIF version | ||
| Description: A terminal object of the category of small categories is a terminal category. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcterm.e | ⊢ 𝐸 = (CatCat‘𝑈) |
| termcterm2. | ⊢ (𝜑 → (𝑈 ∩ TermCat) ≠ ∅) |
| termcterm2.t | ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) |
| Ref | Expression |
|---|---|
| termcterm2 | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcterm2. | . . 3 ⊢ (𝜑 → (𝑈 ∩ TermCat) ≠ ∅) | |
| 2 | n0 4312 | . . 3 ⊢ ((𝑈 ∩ TermCat) ≠ ∅ ↔ ∃𝑑 𝑑 ∈ (𝑈 ∩ TermCat)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑑 𝑑 ∈ (𝑈 ∩ TermCat)) |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (𝑈 ∩ TermCat)) | |
| 5 | 4 | elin2d 4164 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ TermCat) |
| 6 | 5 | termcthind 49440 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ ThinCat) |
| 7 | termcterm.e | . . . . 5 ⊢ 𝐸 = (CatCat‘𝑈) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 9 | termcterm2.t | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) | |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ (TermO‘𝐸)) |
| 11 | 8 | termoo2 49195 | . . . . . . 7 ⊢ (𝐶 ∈ (TermO‘𝐸) → 𝐶 ∈ (Base‘𝐸)) |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ (Base‘𝐸)) |
| 13 | 7, 8 | elbasfv 17161 | . . . . . 6 ⊢ (𝐶 ∈ (Base‘𝐸) → 𝑈 ∈ V) |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑈 ∈ V) |
| 15 | 4 | elin1d 4163 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ 𝑈) |
| 16 | 5 | termccd 49441 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ Cat) |
| 17 | 15, 16 | elind 4159 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (𝑈 ∩ Cat)) |
| 18 | 7, 8, 14 | catcbas 18039 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐸) = (𝑈 ∩ Cat)) |
| 19 | 17, 18 | eleqtrrd 2831 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (Base‘𝐸)) |
| 20 | termorcl 17929 | . . . . . . 7 ⊢ (𝐶 ∈ (TermO‘𝐸) → 𝐸 ∈ Cat) | |
| 21 | 10, 20 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐸 ∈ Cat) |
| 22 | 7, 14, 15, 5 | termcterm 49475 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (TermO‘𝐸)) |
| 23 | 21, 10, 22 | termoeu1w 17957 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶( ≃𝑐 ‘𝐸)𝑑) |
| 24 | 7, 8, 14, 12, 19, 23 | thincciso4 49419 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝐶 ∈ ThinCat ↔ 𝑑 ∈ ThinCat)) |
| 25 | 6, 24 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ ThinCat) |
| 26 | 21, 10, 22 | termoeu1 17956 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → ∃!𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) |
| 27 | euex 2570 | . . . . . 6 ⊢ (∃!𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑) → ∃𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → ∃𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) |
| 29 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 30 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑑) = (Base‘𝑑) | |
| 31 | eqid 2729 | . . . . . . . 8 ⊢ (Iso‘𝐸) = (Iso‘𝐸) | |
| 32 | 7, 8, 29, 30, 14, 12, 19, 31 | catciso 18049 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝑓 ∈ (𝐶(Iso‘𝐸)𝑑) ↔ (𝑓 ∈ ((𝐶 Full 𝑑) ∩ (𝐶 Faith 𝑑)) ∧ (1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑)))) |
| 33 | 32 | simplbda 499 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) ∧ 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) → (1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑)) |
| 34 | fvex 6853 | . . . . . . 7 ⊢ (Base‘𝐶) ∈ V | |
| 35 | 34 | f1oen 8921 | . . . . . 6 ⊢ ((1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑) → (Base‘𝐶) ≈ (Base‘𝑑)) |
| 36 | 33, 35 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) ∧ 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) → (Base‘𝐶) ≈ (Base‘𝑑)) |
| 37 | 28, 36 | exlimddv 1935 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐶) ≈ (Base‘𝑑)) |
| 38 | 30 | istermc3 49438 | . . . . . 6 ⊢ (𝑑 ∈ TermCat ↔ (𝑑 ∈ ThinCat ∧ (Base‘𝑑) ≈ 1o)) |
| 39 | 5, 38 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝑑 ∈ ThinCat ∧ (Base‘𝑑) ≈ 1o)) |
| 40 | 39 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝑑) ≈ 1o) |
| 41 | entr 8954 | . . . 4 ⊢ (((Base‘𝐶) ≈ (Base‘𝑑) ∧ (Base‘𝑑) ≈ 1o) → (Base‘𝐶) ≈ 1o) | |
| 42 | 37, 40, 41 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐶) ≈ 1o) |
| 43 | 29 | istermc3 49438 | . . 3 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ (Base‘𝐶) ≈ 1o)) |
| 44 | 25, 42, 43 | sylanbrc 583 | . 2 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ TermCat) |
| 45 | 3, 44 | exlimddv 1935 | 1 ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 ≠ wne 2925 Vcvv 3444 ∩ cin 3910 ∅c0 4292 class class class wbr 5102 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 1oc1o 8404 ≈ cen 8892 Basecbs 17155 Catccat 17601 Isociso 17684 Full cful 17842 Faith cfth 17843 TermOctermo 17920 CatCatccatc 18036 ThinCatcthinc 49379 TermCatctermc 49434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17605 df-cid 17606 df-sect 17685 df-inv 17686 df-iso 17687 df-cic 17734 df-func 17796 df-idfu 17797 df-cofu 17798 df-full 17844 df-fth 17845 df-termo 17923 df-catc 18037 df-thinc 49380 df-termc 49435 |
| This theorem is referenced by: termcterm3 49477 termcciso 49478 termc2 49480 |
| Copyright terms: Public domain | W3C validator |