| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcterm2 | Structured version Visualization version GIF version | ||
| Description: A terminal object of the category of small categories is a terminal category. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcterm.e | ⊢ 𝐸 = (CatCat‘𝑈) |
| termcterm2. | ⊢ (𝜑 → (𝑈 ∩ TermCat) ≠ ∅) |
| termcterm2.t | ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) |
| Ref | Expression |
|---|---|
| termcterm2 | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcterm2. | . . 3 ⊢ (𝜑 → (𝑈 ∩ TermCat) ≠ ∅) | |
| 2 | n0 4298 | . . 3 ⊢ ((𝑈 ∩ TermCat) ≠ ∅ ↔ ∃𝑑 𝑑 ∈ (𝑈 ∩ TermCat)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑑 𝑑 ∈ (𝑈 ∩ TermCat)) |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (𝑈 ∩ TermCat)) | |
| 5 | 4 | elin2d 4150 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ TermCat) |
| 6 | 5 | termcthind 49510 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ ThinCat) |
| 7 | termcterm.e | . . . . 5 ⊢ 𝐸 = (CatCat‘𝑈) | |
| 8 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 9 | termcterm2.t | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) | |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ (TermO‘𝐸)) |
| 11 | 8 | termoo2 49265 | . . . . . . 7 ⊢ (𝐶 ∈ (TermO‘𝐸) → 𝐶 ∈ (Base‘𝐸)) |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ (Base‘𝐸)) |
| 13 | 7, 8 | elbasfv 17121 | . . . . . 6 ⊢ (𝐶 ∈ (Base‘𝐸) → 𝑈 ∈ V) |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑈 ∈ V) |
| 15 | 4 | elin1d 4149 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ 𝑈) |
| 16 | 5 | termccd 49511 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ Cat) |
| 17 | 15, 16 | elind 4145 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (𝑈 ∩ Cat)) |
| 18 | 7, 8, 14 | catcbas 18003 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐸) = (𝑈 ∩ Cat)) |
| 19 | 17, 18 | eleqtrrd 2834 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (Base‘𝐸)) |
| 20 | termorcl 17893 | . . . . . . 7 ⊢ (𝐶 ∈ (TermO‘𝐸) → 𝐸 ∈ Cat) | |
| 21 | 10, 20 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐸 ∈ Cat) |
| 22 | 7, 14, 15, 5 | termcterm 49545 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (TermO‘𝐸)) |
| 23 | 21, 10, 22 | termoeu1w 17921 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶( ≃𝑐 ‘𝐸)𝑑) |
| 24 | 7, 8, 14, 12, 19, 23 | thincciso4 49489 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝐶 ∈ ThinCat ↔ 𝑑 ∈ ThinCat)) |
| 25 | 6, 24 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ ThinCat) |
| 26 | 21, 10, 22 | termoeu1 17920 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → ∃!𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) |
| 27 | euex 2572 | . . . . . 6 ⊢ (∃!𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑) → ∃𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → ∃𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) |
| 29 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 30 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑑) = (Base‘𝑑) | |
| 31 | eqid 2731 | . . . . . . . 8 ⊢ (Iso‘𝐸) = (Iso‘𝐸) | |
| 32 | 7, 8, 29, 30, 14, 12, 19, 31 | catciso 18013 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝑓 ∈ (𝐶(Iso‘𝐸)𝑑) ↔ (𝑓 ∈ ((𝐶 Full 𝑑) ∩ (𝐶 Faith 𝑑)) ∧ (1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑)))) |
| 33 | 32 | simplbda 499 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) ∧ 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) → (1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑)) |
| 34 | fvex 6830 | . . . . . . 7 ⊢ (Base‘𝐶) ∈ V | |
| 35 | 34 | f1oen 8890 | . . . . . 6 ⊢ ((1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑) → (Base‘𝐶) ≈ (Base‘𝑑)) |
| 36 | 33, 35 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) ∧ 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) → (Base‘𝐶) ≈ (Base‘𝑑)) |
| 37 | 28, 36 | exlimddv 1936 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐶) ≈ (Base‘𝑑)) |
| 38 | 30 | istermc3 49508 | . . . . . 6 ⊢ (𝑑 ∈ TermCat ↔ (𝑑 ∈ ThinCat ∧ (Base‘𝑑) ≈ 1o)) |
| 39 | 5, 38 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝑑 ∈ ThinCat ∧ (Base‘𝑑) ≈ 1o)) |
| 40 | 39 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝑑) ≈ 1o) |
| 41 | entr 8923 | . . . 4 ⊢ (((Base‘𝐶) ≈ (Base‘𝑑) ∧ (Base‘𝑑) ≈ 1o) → (Base‘𝐶) ≈ 1o) | |
| 42 | 37, 40, 41 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐶) ≈ 1o) |
| 43 | 29 | istermc3 49508 | . . 3 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ (Base‘𝐶) ≈ 1o)) |
| 44 | 25, 42, 43 | sylanbrc 583 | . 2 ⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ TermCat) |
| 45 | 3, 44 | exlimddv 1936 | 1 ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 ≠ wne 2928 Vcvv 3436 ∩ cin 3896 ∅c0 4278 class class class wbr 5086 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7341 1st c1st 7914 1oc1o 8373 ≈ cen 8861 Basecbs 17115 Catccat 17565 Isociso 17648 Full cful 17806 Faith cfth 17807 TermOctermo 17884 CatCatccatc 18000 ThinCatcthinc 49449 TermCatctermc 49504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-cat 17569 df-cid 17570 df-sect 17649 df-inv 17650 df-iso 17651 df-cic 17698 df-func 17760 df-idfu 17761 df-cofu 17762 df-full 17808 df-fth 17809 df-termo 17887 df-catc 18001 df-thinc 49450 df-termc 49505 |
| This theorem is referenced by: termcterm3 49547 termcciso 49548 termc2 49550 |
| Copyright terms: Public domain | W3C validator |