Step | Hyp | Ref
| Expression |
1 | | termcterm2. |
. . 3
⊢ (𝜑 → (𝑈 ∩ TermCat) ≠
∅) |
2 | | n0 4352 |
. . 3
⊢ ((𝑈 ∩ TermCat) ≠ ∅
↔ ∃𝑑 𝑑 ∈ (𝑈 ∩ TermCat)) |
3 | 1, 2 | sylib 218 |
. 2
⊢ (𝜑 → ∃𝑑 𝑑 ∈ (𝑈 ∩ TermCat)) |
4 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (𝑈 ∩ TermCat)) |
5 | 4 | elin2d 4204 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ TermCat) |
6 | 5 | termcthind 49098 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ ThinCat) |
7 | | termcterm.e |
. . . . 5
⊢ 𝐸 = (CatCat‘𝑈) |
8 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝐸) =
(Base‘𝐸) |
9 | | termcterm2.t |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) |
10 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ (TermO‘𝐸)) |
11 | | eqid 2736 |
. . . . . . . . 9
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
12 | | termorcl 18032 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (TermO‘𝐸) → 𝐸 ∈ Cat) |
13 | 10, 12 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐸 ∈ Cat) |
14 | 8, 11, 13 | istermoi 18041 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) ∧ 𝐶 ∈ (TermO‘𝐸)) → (𝐶 ∈ (Base‘𝐸) ∧ ∀𝑑 ∈ (Base‘𝐸)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶))) |
15 | 10, 14 | mpdan 687 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝐶 ∈ (Base‘𝐸) ∧ ∀𝑑 ∈ (Base‘𝐸)∃!𝑓 𝑓 ∈ (𝑑(Hom ‘𝐸)𝐶))) |
16 | 15 | simpld 494 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ (Base‘𝐸)) |
17 | 7, 8 | elbasfv 17249 |
. . . . . 6
⊢ (𝐶 ∈ (Base‘𝐸) → 𝑈 ∈ V) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑈 ∈ V) |
19 | 4 | elin1d 4203 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ 𝑈) |
20 | 5 | termccd 49099 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ Cat) |
21 | 19, 20 | elind 4199 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (𝑈 ∩ Cat)) |
22 | 7, 8, 18 | catcbas 18142 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐸) = (𝑈 ∩ Cat)) |
23 | 21, 22 | eleqtrrd 2843 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (Base‘𝐸)) |
24 | 7, 18, 19, 5 | termcterm 49118 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝑑 ∈ (TermO‘𝐸)) |
25 | 13, 10, 24 | termoeu1w 18060 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶( ≃𝑐 ‘𝐸)𝑑) |
26 | 7, 8, 18, 16, 23, 25 | thincciso4 49079 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝐶 ∈ ThinCat ↔ 𝑑 ∈ ThinCat)) |
27 | 6, 26 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ ThinCat) |
28 | 13, 10, 24 | termoeu1 18059 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → ∃!𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) |
29 | | euex 2576 |
. . . . . 6
⊢
(∃!𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑) → ∃𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) |
30 | 28, 29 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → ∃𝑓 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) |
31 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝐶) =
(Base‘𝐶) |
32 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝑑) =
(Base‘𝑑) |
33 | | eqid 2736 |
. . . . . . . 8
⊢
(Iso‘𝐸) =
(Iso‘𝐸) |
34 | 7, 8, 31, 32, 18, 16, 23, 33 | catciso 18152 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝑓 ∈ (𝐶(Iso‘𝐸)𝑑) ↔ (𝑓 ∈ ((𝐶 Full 𝑑) ∩ (𝐶 Faith 𝑑)) ∧ (1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑)))) |
35 | 34 | simplbda 499 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) ∧ 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) → (1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑)) |
36 | | fvex 6917 |
. . . . . . 7
⊢
(Base‘𝐶)
∈ V |
37 | 36 | f1oen 9009 |
. . . . . 6
⊢
((1st ‘𝑓):(Base‘𝐶)–1-1-onto→(Base‘𝑑) → (Base‘𝐶) ≈ (Base‘𝑑)) |
38 | 35, 37 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) ∧ 𝑓 ∈ (𝐶(Iso‘𝐸)𝑑)) → (Base‘𝐶) ≈ (Base‘𝑑)) |
39 | 30, 38 | exlimddv 1935 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐶) ≈ (Base‘𝑑)) |
40 | 32 | istermc3 49096 |
. . . . . 6
⊢ (𝑑 ∈ TermCat ↔ (𝑑 ∈ ThinCat ∧
(Base‘𝑑) ≈
1o)) |
41 | 5, 40 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (𝑑 ∈ ThinCat ∧ (Base‘𝑑) ≈
1o)) |
42 | 41 | simprd 495 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝑑) ≈
1o) |
43 | | entr 9042 |
. . . 4
⊢
(((Base‘𝐶)
≈ (Base‘𝑑)
∧ (Base‘𝑑)
≈ 1o) → (Base‘𝐶) ≈ 1o) |
44 | 39, 42, 43 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → (Base‘𝐶) ≈
1o) |
45 | 31 | istermc3 49096 |
. . 3
⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧
(Base‘𝐶) ≈
1o)) |
46 | 27, 44, 45 | sylanbrc 583 |
. 2
⊢ ((𝜑 ∧ 𝑑 ∈ (𝑈 ∩ TermCat)) → 𝐶 ∈ TermCat) |
47 | 3, 46 | exlimddv 1935 |
1
⊢ (𝜑 → 𝐶 ∈ TermCat) |