|   | Mathbox for Zhi Wang | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diagciso | Structured version Visualization version GIF version | ||
| Description: The diagonal functor is
an isomorphism from a category 𝐶 to the
         category of functors from a terminal category to 𝐶. It is provable that the inverse of the diagonal functor is the mapped object by the transposed curry of (𝐷 evalF 𝐶), i.e., ∪ ran (1st ‘(〈𝐷, 𝑄〉 curryF ((𝐷 evalF 𝐶) ∘func (𝐷swapF𝑄)))). (Contributed by Zhi Wang, 21-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| diagffth.c | ⊢ (𝜑 → 𝐶 ∈ Cat) | 
| diagffth.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) | 
| diagffth.q | ⊢ 𝑄 = (𝐷 FuncCat 𝐶) | 
| diagciso.e | ⊢ 𝐸 = (CatCat‘𝑈) | 
| diagciso.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) | 
| diagciso.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) | 
| diagciso.1 | ⊢ (𝜑 → 𝑄 ∈ 𝑈) | 
| diagciso.i | ⊢ 𝐼 = (Iso‘𝐸) | 
| diagciso.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) | 
| Ref | Expression | 
|---|---|
| diagciso | ⊢ (𝜑 → 𝐿 ∈ (𝐶𝐼𝑄)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | diagffth.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | diagffth.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 3 | diagffth.q | . . 3 ⊢ 𝑄 = (𝐷 FuncCat 𝐶) | |
| 4 | diagciso.l | . . 3 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 5 | 1, 2, 3, 4 | diagffth 49196 | . 2 ⊢ (𝜑 → 𝐿 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) | 
| 6 | eqid 2736 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 7 | 6, 2, 1, 4 | diag1f1o 49192 | . 2 ⊢ (𝜑 → (1st ‘𝐿):(Base‘𝐶)–1-1-onto→(𝐷 Func 𝐶)) | 
| 8 | diagciso.e | . . 3 ⊢ 𝐸 = (CatCat‘𝑈) | |
| 9 | eqid 2736 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 10 | 3 | fucbas 18009 | . . 3 ⊢ (𝐷 Func 𝐶) = (Base‘𝑄) | 
| 11 | diagciso.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 12 | diagciso.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 13 | 12, 1 | elind 4199 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∩ Cat)) | 
| 14 | 8, 9, 11 | catcbas 18147 | . . . 4 ⊢ (𝜑 → (Base‘𝐸) = (𝑈 ∩ Cat)) | 
| 15 | 13, 14 | eleqtrrd 2843 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐸)) | 
| 16 | diagciso.1 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝑈) | |
| 17 | 2 | termccd 49151 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) | 
| 18 | 3, 17, 1 | fuccat 18019 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ Cat) | 
| 19 | 16, 18 | elind 4199 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑈 ∩ Cat)) | 
| 20 | 19, 14 | eleqtrrd 2843 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (Base‘𝐸)) | 
| 21 | diagciso.i | . . 3 ⊢ 𝐼 = (Iso‘𝐸) | |
| 22 | 8, 9, 6, 10, 11, 15, 20, 21 | catciso 18157 | . 2 ⊢ (𝜑 → (𝐿 ∈ (𝐶𝐼𝑄) ↔ (𝐿 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)) ∧ (1st ‘𝐿):(Base‘𝐶)–1-1-onto→(𝐷 Func 𝐶)))) | 
| 23 | 5, 7, 22 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐿 ∈ (𝐶𝐼𝑄)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∩ cin 3949 –1-1-onto→wf1o 6559 ‘cfv 6560 (class class class)co 7432 1st c1st 8013 Basecbs 17248 Catccat 17708 Isociso 17791 Func cfunc 17900 Full cful 17950 Faith cfth 17951 FuncCat cfuc 17991 CatCatccatc 18144 Δfunccdiag 18258 TermCatctermc 49144 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-slot 17220 df-ndx 17232 df-base 17249 df-hom 17322 df-cco 17323 df-cat 17712 df-cid 17713 df-sect 17792 df-inv 17793 df-iso 17794 df-func 17904 df-idfu 17905 df-cofu 17906 df-full 17952 df-fth 17953 df-nat 17992 df-fuc 17993 df-catc 18145 df-xpc 18218 df-1stf 18219 df-curf 18260 df-diag 18262 df-thinc 49092 df-termc 49145 | 
| This theorem is referenced by: diagcic 49198 | 
| Copyright terms: Public domain | W3C validator |