Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setc1onsubc Structured version   Visualization version   GIF version

Theorem setc1onsubc 49581
Description: Construct a category with one object and two morphisms and prove that category (SetCat‘1o) satisfies all conditions for a subcategory but the compatibility of identity morphisms, showing the necessity of the latter condition in defining a subcategory. Exercise 4A of [Adamek] p. 58. (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
setc1onsubc.c 𝐶 = {⟨(Base‘ndx), {∅}⟩, ⟨(Hom ‘ndx), {⟨∅, ∅, 2o⟩}⟩, ⟨(comp‘ndx), {⟨⟨∅, ∅⟩, ∅, · ⟩}⟩}
setc1onsubc.x · = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔))
setc1onsubc.e 𝐸 = (SetCat‘1o)
setc1onsubc.j 𝐽 = (Homf𝐸)
setc1onsubc.s 𝑆 = 1o
setc1onsubc.h 𝐻 = (Homf𝐶)
setc1onsubc.i 1 = (Id‘𝐶)
setc1onsubc.d 𝐷 = (𝐶cat 𝐽)
Assertion
Ref Expression
setc1onsubc (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐶(𝑥,𝑓,𝑔)   𝐷(𝑥,𝑓,𝑔)   𝑆(𝑥,𝑓,𝑔)   · (𝑥,𝑓,𝑔)   1 (𝑥,𝑓,𝑔)   𝐸(𝑥,𝑓,𝑔)   𝐻(𝑥,𝑓,𝑔)   𝐽(𝑥,𝑓,𝑔)

Proof of Theorem setc1onsubc
Dummy variables 𝑦 𝑎 𝑏 𝑐 𝑚 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4365 . . . 4 ∅ ⊆ 1o
2 1oex 8446 . . . 4 1o ∈ V
3 setc1onsubc.c . . . . 5 𝐶 = {⟨(Base‘ndx), {∅}⟩, ⟨(Hom ‘ndx), {⟨∅, ∅, 2o⟩}⟩, ⟨(comp‘ndx), {⟨⟨∅, ∅⟩, ∅, · ⟩}⟩}
4 df2o3 8444 . . . . 5 2o = {∅, 1o}
5 setc1onsubc.x . . . . 5 · = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔))
63, 4, 5incat 49580 . . . 4 ((∅ ⊆ 1o ∧ 1o ∈ V) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o)))
71, 2, 6mp2an 692 . . 3 (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o))
87simpli 483 . 2 𝐶 ∈ Cat
9 setc1onsubc.j . . 3 𝐽 = (Homf𝐸)
10 setc1onsubc.s . . . 4 𝑆 = 1o
11 setc1onsubc.e . . . . 5 𝐸 = (SetCat‘1o)
1211setc1obas 49471 . . . 4 1o = (Base‘𝐸)
1310, 12eqtri 2753 . . 3 𝑆 = (Base‘𝐸)
149, 13homffn 17660 . 2 𝐽 Fn (𝑆 × 𝑆)
15 ssid 3971 . . . 4 {∅} ⊆ {∅}
16 snsspr1 4780 . . . . . 6 {∅} ⊆ {∅, 1o}
1711setc1ohomfval 49472 . . . . . . . . 9 {⟨∅, ∅, 1o⟩} = (Hom ‘𝐸)
18 0lt1o 8470 . . . . . . . . . 10 ∅ ∈ 1o
1918a1i 11 . . . . . . . . 9 (⊤ → ∅ ∈ 1o)
209, 12, 17, 19, 19homfval 17659 . . . . . . . 8 (⊤ → (∅𝐽∅) = (∅{⟨∅, ∅, 1o⟩}∅))
2120mptru 1547 . . . . . . 7 (∅𝐽∅) = (∅{⟨∅, ∅, 1o⟩}∅)
222ovsn2 48839 . . . . . . 7 (∅{⟨∅, ∅, 1o⟩}∅) = 1o
23 df1o2 8443 . . . . . . 7 1o = {∅}
2421, 22, 233eqtri 2757 . . . . . 6 (∅𝐽∅) = {∅}
25 setc1onsubc.h . . . . . . . . 9 𝐻 = (Homf𝐶)
26 snex 5393 . . . . . . . . . 10 {∅} ∈ V
273, 26catbas 49205 . . . . . . . . 9 {∅} = (Base‘𝐶)
28 snex 5393 . . . . . . . . . 10 {⟨∅, ∅, 2o⟩} ∈ V
293, 28cathomfval 49206 . . . . . . . . 9 {⟨∅, ∅, 2o⟩} = (Hom ‘𝐶)
30 0ex 5264 . . . . . . . . . . 11 ∅ ∈ V
3130snid 4628 . . . . . . . . . 10 ∅ ∈ {∅}
3231a1i 11 . . . . . . . . 9 (⊤ → ∅ ∈ {∅})
3325, 27, 29, 32, 32homfval 17659 . . . . . . . 8 (⊤ → (∅𝐻∅) = (∅{⟨∅, ∅, 2o⟩}∅))
3433mptru 1547 . . . . . . 7 (∅𝐻∅) = (∅{⟨∅, ∅, 2o⟩}∅)
35 2oex 8447 . . . . . . . 8 2o ∈ V
3635ovsn2 48839 . . . . . . 7 (∅{⟨∅, ∅, 2o⟩}∅) = 2o
3734, 36, 43eqtri 2757 . . . . . 6 (∅𝐻∅) = {∅, 1o}
3816, 24, 373sstr4i 4000 . . . . 5 (∅𝐽∅) ⊆ (∅𝐻∅)
39 oveq1 7396 . . . . . . . . 9 (𝑝 = ∅ → (𝑝𝐽𝑞) = (∅𝐽𝑞))
40 oveq1 7396 . . . . . . . . 9 (𝑝 = ∅ → (𝑝𝐻𝑞) = (∅𝐻𝑞))
4139, 40sseq12d 3982 . . . . . . . 8 (𝑝 = ∅ → ((𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽𝑞) ⊆ (∅𝐻𝑞)))
4241ralbidv 3157 . . . . . . 7 (𝑝 = ∅ → (∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞)))
4330, 42ralsn 4647 . . . . . 6 (∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞))
44 oveq2 7397 . . . . . . . 8 (𝑞 = ∅ → (∅𝐽𝑞) = (∅𝐽∅))
45 oveq2 7397 . . . . . . . 8 (𝑞 = ∅ → (∅𝐻𝑞) = (∅𝐻∅))
4644, 45sseq12d 3982 . . . . . . 7 (𝑞 = ∅ → ((∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅)))
4730, 46ralsn 4647 . . . . . 6 (∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅))
4843, 47bitri 275 . . . . 5 (∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅))
4938, 48mpbir 231 . . . 4 𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)
5023, 12eqtr3i 2755 . . . . . . . 8 {∅} = (Base‘𝐸)
519, 50homffn 17660 . . . . . . 7 𝐽 Fn ({∅} × {∅})
5251a1i 11 . . . . . 6 (⊤ → 𝐽 Fn ({∅} × {∅}))
5325, 27homffn 17660 . . . . . . 7 𝐻 Fn ({∅} × {∅})
5453a1i 11 . . . . . 6 (⊤ → 𝐻 Fn ({∅} × {∅}))
5526a1i 11 . . . . . 6 (⊤ → {∅} ∈ V)
5652, 54, 55isssc 17788 . . . . 5 (⊤ → (𝐽cat 𝐻 ↔ ({∅} ⊆ {∅} ∧ ∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))))
5756mptru 1547 . . . 4 (𝐽cat 𝐻 ↔ ({∅} ⊆ {∅} ∧ ∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)))
5815, 49, 57mpbir2an 711 . . 3 𝐽cat 𝐻
59 elirr 9556 . . . 4 ¬ {∅} ∈ {∅}
6010, 23eqtri 2753 . . . . . 6 𝑆 = {∅}
61 biid 261 . . . . . 6 (¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥))
6260, 61rexeqbii 3320 . . . . 5 (∃𝑥𝑆 ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ∃𝑥 ∈ {∅} ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥))
63 rexnal 3083 . . . . 5 (∃𝑥𝑆 ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
64 fveq2 6860 . . . . . . . . 9 (𝑥 = ∅ → ( 1𝑥) = ( 1 ‘∅))
6523a1i 11 . . . . . . . . . . 11 (𝑦 = ∅ → 1o = {∅})
66 setc1onsubc.i . . . . . . . . . . . 12 1 = (Id‘𝐶)
677simpri 485 . . . . . . . . . . . 12 (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o)
6866, 67eqtri 2753 . . . . . . . . . . 11 1 = (𝑦 ∈ {∅} ↦ 1o)
6965, 68, 26fvmpt 6970 . . . . . . . . . 10 (∅ ∈ {∅} → ( 1 ‘∅) = {∅})
7031, 69ax-mp 5 . . . . . . . . 9 ( 1 ‘∅) = {∅}
7164, 70eqtrdi 2781 . . . . . . . 8 (𝑥 = ∅ → ( 1𝑥) = {∅})
72 oveq12 7398 . . . . . . . . . 10 ((𝑥 = ∅ ∧ 𝑥 = ∅) → (𝑥𝐽𝑥) = (∅𝐽∅))
7372anidms 566 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝐽𝑥) = (∅𝐽∅))
7473, 24eqtrdi 2781 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝐽𝑥) = {∅})
7571, 74eleq12d 2823 . . . . . . 7 (𝑥 = ∅ → (( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ {∅} ∈ {∅}))
7675notbid 318 . . . . . 6 (𝑥 = ∅ → (¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈ {∅}))
7730, 76rexsn 4648 . . . . 5 (∃𝑥 ∈ {∅} ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈ {∅})
7862, 63, 773bitr3ri 302 . . . 4 (¬ {∅} ∈ {∅} ↔ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
7959, 78mpbi 230 . . 3 ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥)
80 setc1oterm 49470 . . . . . . . 8 (SetCat‘1o) ∈ TermCat
8180a1i 11 . . . . . . 7 (⊤ → (SetCat‘1o) ∈ TermCat)
8281termccd 49458 . . . . . 6 (⊤ → (SetCat‘1o) ∈ Cat)
8382mptru 1547 . . . . 5 (SetCat‘1o) ∈ Cat
8411, 83eqeltri 2825 . . . 4 𝐸 ∈ Cat
85 setc1onsubc.d . . . . . 6 𝐷 = (𝐶cat 𝐽)
86 snex 5393 . . . . . . 7 {⟨⟨∅, ∅⟩, ∅, · ⟩} ∈ V
873, 86catcofval 49207 . . . . . 6 {⟨⟨∅, ∅⟩, ∅, · ⟩} = (comp‘𝐶)
8811setc1ocofval 49473 . . . . . 6 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘𝐸)
89 velsn 4607 . . . . . . . . . . 11 (𝑎 ∈ {∅} ↔ 𝑎 = ∅)
90 velsn 4607 . . . . . . . . . . 11 (𝑏 ∈ {∅} ↔ 𝑏 = ∅)
91 velsn 4607 . . . . . . . . . . 11 (𝑐 ∈ {∅} ↔ 𝑐 = ∅)
9289, 90, 913anbi123i 1155 . . . . . . . . . 10 ((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ↔ (𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅))
9392anbi1i 624 . . . . . . . . 9 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))))
94 simp1 1136 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑎 = ∅)
95 simp2 1137 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑏 = ∅)
9694, 95oveq12d 7407 . . . . . . . . . . . . . 14 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = (∅𝐽∅))
9796, 24eqtrdi 2781 . . . . . . . . . . . . 13 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = {∅})
9897eleq2d 2815 . . . . . . . . . . . 12 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 ∈ {∅}))
99 velsn 4607 . . . . . . . . . . . 12 (𝑚 ∈ {∅} ↔ 𝑚 = ∅)
10098, 99bitrdi 287 . . . . . . . . . . 11 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 = ∅))
101 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑐 = ∅)
10295, 101oveq12d 7407 . . . . . . . . . . . . . 14 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = (∅𝐽∅))
103102, 24eqtrdi 2781 . . . . . . . . . . . . 13 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = {∅})
104103eleq2d 2815 . . . . . . . . . . . 12 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 ∈ {∅}))
105 velsn 4607 . . . . . . . . . . . 12 (𝑛 ∈ {∅} ↔ 𝑛 = ∅)
106104, 105bitrdi 287 . . . . . . . . . . 11 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 = ∅))
107100, 106anbi12d 632 . . . . . . . . . 10 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → ((𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐)) ↔ (𝑚 = ∅ ∧ 𝑛 = ∅)))
108107pm5.32i 574 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)))
10993, 108bitri 275 . . . . . . . 8 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)))
11030prid1 4728 . . . . . . . . . . . 12 ∅ ∈ {∅, 1o}
111110, 4eleqtrri 2828 . . . . . . . . . . 11 ∅ ∈ 2o
112 ineq12 4180 . . . . . . . . . . . . 13 ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓𝑔) = (∅ ∩ ∅))
113 0in 4362 . . . . . . . . . . . . 13 (∅ ∩ ∅) = ∅
114112, 113eqtrdi 2781 . . . . . . . . . . . 12 ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓𝑔) = ∅)
115114, 5, 30ovmpoa 7546 . . . . . . . . . . 11 ((∅ ∈ 2o ∧ ∅ ∈ 2o) → (∅ · ∅) = ∅)
116111, 111, 115mp2an 692 . . . . . . . . . 10 (∅ · ∅) = ∅
11730ovsn2 48839 . . . . . . . . . 10 (∅{⟨∅, ∅, ∅⟩}∅) = ∅
118116, 117eqtr4i 2756 . . . . . . . . 9 (∅ · ∅) = (∅{⟨∅, ∅, ∅⟩}∅)
119 simpl1 1192 . . . . . . . . . . . . 13 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑎 = ∅)
120 simpl2 1193 . . . . . . . . . . . . 13 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑏 = ∅)
121119, 120opeq12d 4847 . . . . . . . . . . . 12 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → ⟨𝑎, 𝑏⟩ = ⟨∅, ∅⟩)
122 simpl3 1194 . . . . . . . . . . . 12 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑐 = ∅)
123121, 122oveq12d 7407 . . . . . . . . . . 11 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}∅))
12435, 35mpoex 8060 . . . . . . . . . . . . 13 (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔)) ∈ V
1255, 124eqeltri 2825 . . . . . . . . . . . 12 · ∈ V
126125ovsn2 48839 . . . . . . . . . . 11 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}∅) = ·
127123, 126eqtrdi 2781 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐) = · )
128 simprr 772 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑛 = ∅)
129 simprl 770 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑚 = ∅)
130127, 128, 129oveq123d 7410 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (∅ · ∅))
131121, 122oveq12d 7407 . . . . . . . . . . 11 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅))
132 snex 5393 . . . . . . . . . . . 12 {⟨∅, ∅, ∅⟩} ∈ V
133132ovsn2 48839 . . . . . . . . . . 11 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅) = {⟨∅, ∅, ∅⟩}
134131, 133eqtrdi 2781 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐) = {⟨∅, ∅, ∅⟩})
135134, 128, 129oveq123d 7410 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚) = (∅{⟨∅, ∅, ∅⟩}∅))
136118, 130, 1353eqtr4a 2791 . . . . . . . 8 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
137109, 136sylbi 217 . . . . . . 7 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
138137adantll 714 . . . . . 6 (((⊤ ∧ (𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅})) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
13984a1i 11 . . . . . 6 (⊤ → 𝐸 ∈ Cat)
14015a1i 11 . . . . . 6 (⊤ → {∅} ⊆ {∅})
14185, 27, 50, 9, 87, 88, 138, 139, 140resccat 49053 . . . . 5 (⊤ → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat))
142141mptru 1547 . . . 4 (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)
14384, 142mpbir 231 . . 3 𝐷 ∈ Cat
14458, 79, 1433pm3.2i 1340 . 2 (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)
1458, 14, 1443pm3.2i 1340 1 (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cin 3915  wss 3916  c0 4298  {csn 4591  {cpr 4593  {ctp 4595  cop 4597  cotp 4599   class class class wbr 5109  cmpt 5190   × cxp 5638   Fn wfn 6508  cfv 6513  (class class class)co 7389  cmpo 7391  1oc1o 8429  2oc2o 8430  ndxcnx 17169  Basecbs 17185  Hom chom 17237  compcco 17238  Catccat 17631  Idccid 17632  Homf chomf 17633  cat cssc 17775  cat cresc 17776  SetCatcsetc 18043  TermCatctermc 49451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-reg 9551  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-homf 17637  df-comf 17638  df-ssc 17778  df-resc 17779  df-setc 18044  df-thinc 49397  df-termc 49452
This theorem is referenced by:  cnelsubc  49583
  Copyright terms: Public domain W3C validator