| Step | Hyp | Ref
| Expression |
| 1 | | 0ss 4373 |
. . . 4
⊢ ∅
⊆ 1o |
| 2 | | 1oex 8485 |
. . . 4
⊢
1o ∈ V |
| 3 | | setc1onsubc.c |
. . . . 5
⊢ 𝐶 = {〈(Base‘ndx),
{∅}〉, 〈(Hom ‘ndx), {〈∅, ∅,
2o〉}〉, 〈(comp‘ndx), {〈〈∅,
∅〉, ∅, ·
〉}〉} |
| 4 | | df2o3 8483 |
. . . . 5
⊢
2o = {∅, 1o} |
| 5 | | setc1onsubc.x |
. . . . 5
⊢ · =
(𝑓 ∈ 2o,
𝑔 ∈ 2o
↦ (𝑓 ∩ 𝑔)) |
| 6 | 3, 4, 5 | incat 49339 |
. . . 4
⊢ ((∅
⊆ 1o ∧ 1o ∈ V) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {∅} ↦
1o))) |
| 7 | 1, 2, 6 | mp2an 692 |
. . 3
⊢ (𝐶 ∈ Cat ∧
(Id‘𝐶) = (𝑦 ∈ {∅} ↦
1o)) |
| 8 | 7 | simpli 483 |
. 2
⊢ 𝐶 ∈ Cat |
| 9 | | setc1onsubc.j |
. . 3
⊢ 𝐽 = (Homf
‘𝐸) |
| 10 | | setc1onsubc.s |
. . . 4
⊢ 𝑆 =
1o |
| 11 | | setc1onsubc.e |
. . . . 5
⊢ 𝐸 =
(SetCat‘1o) |
| 12 | 11 | setc1obas 49238 |
. . . 4
⊢
1o = (Base‘𝐸) |
| 13 | 10, 12 | eqtri 2757 |
. . 3
⊢ 𝑆 = (Base‘𝐸) |
| 14 | 9, 13 | homffn 17692 |
. 2
⊢ 𝐽 Fn (𝑆 × 𝑆) |
| 15 | | ssid 3979 |
. . . 4
⊢ {∅}
⊆ {∅} |
| 16 | | snsspr1 4788 |
. . . . . 6
⊢ {∅}
⊆ {∅, 1o} |
| 17 | 11 | setc1ohomfval 49239 |
. . . . . . . . 9
⊢
{〈∅, ∅, 1o〉} = (Hom ‘𝐸) |
| 18 | | 0lt1o 8511 |
. . . . . . . . . 10
⊢ ∅
∈ 1o |
| 19 | 18 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ ∅ ∈ 1o) |
| 20 | 9, 12, 17, 19, 19 | homfval 17691 |
. . . . . . . 8
⊢ (⊤
→ (∅𝐽∅) =
(∅{〈∅, ∅, 1o〉}∅)) |
| 21 | 20 | mptru 1546 |
. . . . . . 7
⊢
(∅𝐽∅) =
(∅{〈∅, ∅, 1o〉}∅) |
| 22 | 2 | ovsn2 48731 |
. . . . . . 7
⊢
(∅{〈∅, ∅, 1o〉}∅) =
1o |
| 23 | | df1o2 8482 |
. . . . . . 7
⊢
1o = {∅} |
| 24 | 21, 22, 23 | 3eqtri 2761 |
. . . . . 6
⊢
(∅𝐽∅) =
{∅} |
| 25 | | setc1onsubc.h |
. . . . . . . . 9
⊢ 𝐻 = (Homf
‘𝐶) |
| 26 | | snex 5404 |
. . . . . . . . . 10
⊢ {∅}
∈ V |
| 27 | 3, 26 | catbas 49009 |
. . . . . . . . 9
⊢ {∅}
= (Base‘𝐶) |
| 28 | | snex 5404 |
. . . . . . . . . 10
⊢
{〈∅, ∅, 2o〉} ∈ V |
| 29 | 3, 28 | cathomfval 49010 |
. . . . . . . . 9
⊢
{〈∅, ∅, 2o〉} = (Hom ‘𝐶) |
| 30 | | 0ex 5275 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
| 31 | 30 | snid 4636 |
. . . . . . . . . 10
⊢ ∅
∈ {∅} |
| 32 | 31 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ ∅ ∈ {∅}) |
| 33 | 25, 27, 29, 32, 32 | homfval 17691 |
. . . . . . . 8
⊢ (⊤
→ (∅𝐻∅) =
(∅{〈∅, ∅, 2o〉}∅)) |
| 34 | 33 | mptru 1546 |
. . . . . . 7
⊢
(∅𝐻∅) =
(∅{〈∅, ∅, 2o〉}∅) |
| 35 | | 2oex 8486 |
. . . . . . . 8
⊢
2o ∈ V |
| 36 | 35 | ovsn2 48731 |
. . . . . . 7
⊢
(∅{〈∅, ∅, 2o〉}∅) =
2o |
| 37 | 34, 36, 4 | 3eqtri 2761 |
. . . . . 6
⊢
(∅𝐻∅) =
{∅, 1o} |
| 38 | 16, 24, 37 | 3sstr4i 4008 |
. . . . 5
⊢
(∅𝐽∅)
⊆ (∅𝐻∅) |
| 39 | | oveq1 7407 |
. . . . . . . . 9
⊢ (𝑝 = ∅ → (𝑝𝐽𝑞) = (∅𝐽𝑞)) |
| 40 | | oveq1 7407 |
. . . . . . . . 9
⊢ (𝑝 = ∅ → (𝑝𝐻𝑞) = (∅𝐻𝑞)) |
| 41 | 39, 40 | sseq12d 3990 |
. . . . . . . 8
⊢ (𝑝 = ∅ → ((𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽𝑞) ⊆ (∅𝐻𝑞))) |
| 42 | 41 | ralbidv 3161 |
. . . . . . 7
⊢ (𝑝 = ∅ → (∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞))) |
| 43 | 30, 42 | ralsn 4655 |
. . . . . 6
⊢
(∀𝑝 ∈
{∅}∀𝑞 ∈
{∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞)) |
| 44 | | oveq2 7408 |
. . . . . . . 8
⊢ (𝑞 = ∅ → (∅𝐽𝑞) = (∅𝐽∅)) |
| 45 | | oveq2 7408 |
. . . . . . . 8
⊢ (𝑞 = ∅ → (∅𝐻𝑞) = (∅𝐻∅)) |
| 46 | 44, 45 | sseq12d 3990 |
. . . . . . 7
⊢ (𝑞 = ∅ → ((∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅))) |
| 47 | 30, 46 | ralsn 4655 |
. . . . . 6
⊢
(∀𝑞 ∈
{∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅)) |
| 48 | 43, 47 | bitri 275 |
. . . . 5
⊢
(∀𝑝 ∈
{∅}∀𝑞 ∈
{∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅)) |
| 49 | 38, 48 | mpbir 231 |
. . . 4
⊢
∀𝑝 ∈
{∅}∀𝑞 ∈
{∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) |
| 50 | 23, 12 | eqtr3i 2759 |
. . . . . . . 8
⊢ {∅}
= (Base‘𝐸) |
| 51 | 9, 50 | homffn 17692 |
. . . . . . 7
⊢ 𝐽 Fn ({∅} ×
{∅}) |
| 52 | 51 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 𝐽 Fn ({∅}
× {∅})) |
| 53 | 25, 27 | homffn 17692 |
. . . . . . 7
⊢ 𝐻 Fn ({∅} ×
{∅}) |
| 54 | 53 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 𝐻 Fn ({∅}
× {∅})) |
| 55 | 26 | a1i 11 |
. . . . . 6
⊢ (⊤
→ {∅} ∈ V) |
| 56 | 52, 54, 55 | isssc 17820 |
. . . . 5
⊢ (⊤
→ (𝐽
⊆cat 𝐻
↔ ({∅} ⊆ {∅} ∧ ∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)))) |
| 57 | 56 | mptru 1546 |
. . . 4
⊢ (𝐽 ⊆cat 𝐻 ↔ ({∅} ⊆
{∅} ∧ ∀𝑝
∈ {∅}∀𝑞
∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))) |
| 58 | 15, 49, 57 | mpbir2an 711 |
. . 3
⊢ 𝐽 ⊆cat 𝐻 |
| 59 | | elirr 9604 |
. . . 4
⊢ ¬
{∅} ∈ {∅} |
| 60 | 10, 23 | eqtri 2757 |
. . . . . 6
⊢ 𝑆 = {∅} |
| 61 | | biid 261 |
. . . . . 6
⊢ (¬ (
1
‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 62 | 60, 61 | rexeqbii 3322 |
. . . . 5
⊢
(∃𝑥 ∈
𝑆 ¬ ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ∃𝑥 ∈ {∅} ¬ ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 63 | | rexnal 3088 |
. . . . 5
⊢
(∃𝑥 ∈
𝑆 ¬ ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 64 | | fveq2 6873 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → ( 1 ‘𝑥) = ( 1
‘∅)) |
| 65 | 23 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → 1o
= {∅}) |
| 66 | | setc1onsubc.i |
. . . . . . . . . . . 12
⊢ 1 =
(Id‘𝐶) |
| 67 | 7 | simpri 485 |
. . . . . . . . . . . 12
⊢
(Id‘𝐶) =
(𝑦 ∈ {∅} ↦
1o) |
| 68 | 66, 67 | eqtri 2757 |
. . . . . . . . . . 11
⊢ 1 = (𝑦 ∈ {∅} ↦
1o) |
| 69 | 65, 68, 26 | fvmpt 6983 |
. . . . . . . . . 10
⊢ (∅
∈ {∅} → ( 1 ‘∅) =
{∅}) |
| 70 | 31, 69 | ax-mp 5 |
. . . . . . . . 9
⊢ ( 1
‘∅) = {∅} |
| 71 | 64, 70 | eqtrdi 2785 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ( 1 ‘𝑥) = {∅}) |
| 72 | | oveq12 7409 |
. . . . . . . . . 10
⊢ ((𝑥 = ∅ ∧ 𝑥 = ∅) → (𝑥𝐽𝑥) = (∅𝐽∅)) |
| 73 | 72 | anidms 566 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑥𝐽𝑥) = (∅𝐽∅)) |
| 74 | 73, 24 | eqtrdi 2785 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑥𝐽𝑥) = {∅}) |
| 75 | 71, 74 | eleq12d 2827 |
. . . . . . 7
⊢ (𝑥 = ∅ → (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ↔ {∅} ∈
{∅})) |
| 76 | 75 | notbid 318 |
. . . . . 6
⊢ (𝑥 = ∅ → (¬ ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈
{∅})) |
| 77 | 30, 76 | rexsn 4656 |
. . . . 5
⊢
(∃𝑥 ∈
{∅} ¬ ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈
{∅}) |
| 78 | 62, 63, 77 | 3bitr3ri 302 |
. . . 4
⊢ (¬
{∅} ∈ {∅} ↔ ¬ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 79 | 59, 78 | mpbi 230 |
. . 3
⊢ ¬
∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) |
| 80 | | setc1oterm 49237 |
. . . . . . . 8
⊢
(SetCat‘1o) ∈ TermCat |
| 81 | 80 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (SetCat‘1o) ∈ TermCat) |
| 82 | 81 | termccd 49226 |
. . . . . 6
⊢ (⊤
→ (SetCat‘1o) ∈ Cat) |
| 83 | 82 | mptru 1546 |
. . . . 5
⊢
(SetCat‘1o) ∈ Cat |
| 84 | 11, 83 | eqeltri 2829 |
. . . 4
⊢ 𝐸 ∈ Cat |
| 85 | | setc1onsubc.d |
. . . . . 6
⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
| 86 | | snex 5404 |
. . . . . . 7
⊢
{〈〈∅, ∅〉, ∅, · 〉} ∈
V |
| 87 | 3, 86 | catcofval 49011 |
. . . . . 6
⊢
{〈〈∅, ∅〉, ∅, · 〉} =
(comp‘𝐶) |
| 88 | 11 | setc1ocofval 49240 |
. . . . . 6
⊢
{〈〈∅, ∅〉, ∅, {〈∅, ∅,
∅〉}〉} = (comp‘𝐸) |
| 89 | | velsn 4615 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ {∅} ↔ 𝑎 = ∅) |
| 90 | | velsn 4615 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ {∅} ↔ 𝑏 = ∅) |
| 91 | | velsn 4615 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ {∅} ↔ 𝑐 = ∅) |
| 92 | 89, 90, 91 | 3anbi123i 1155 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ↔ (𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅)) |
| 93 | 92 | anbi1i 624 |
. . . . . . . . 9
⊢ (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐)))) |
| 94 | | simp1 1136 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑎 = ∅) |
| 95 | | simp2 1137 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑏 = ∅) |
| 96 | 94, 95 | oveq12d 7418 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = (∅𝐽∅)) |
| 97 | 96, 24 | eqtrdi 2785 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = {∅}) |
| 98 | 97 | eleq2d 2819 |
. . . . . . . . . . . 12
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 ∈ {∅})) |
| 99 | | velsn 4615 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ {∅} ↔ 𝑚 = ∅) |
| 100 | 98, 99 | bitrdi 287 |
. . . . . . . . . . 11
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 = ∅)) |
| 101 | | simp3 1138 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑐 = ∅) |
| 102 | 95, 101 | oveq12d 7418 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = (∅𝐽∅)) |
| 103 | 102, 24 | eqtrdi 2785 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = {∅}) |
| 104 | 103 | eleq2d 2819 |
. . . . . . . . . . . 12
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 ∈ {∅})) |
| 105 | | velsn 4615 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {∅} ↔ 𝑛 = ∅) |
| 106 | 104, 105 | bitrdi 287 |
. . . . . . . . . . 11
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 = ∅)) |
| 107 | 100, 106 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → ((𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐)) ↔ (𝑚 = ∅ ∧ 𝑛 = ∅))) |
| 108 | 107 | pm5.32i 574 |
. . . . . . . . 9
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅))) |
| 109 | 93, 108 | bitri 275 |
. . . . . . . 8
⊢ (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅))) |
| 110 | 30 | prid1 4736 |
. . . . . . . . . . . 12
⊢ ∅
∈ {∅, 1o} |
| 111 | 110, 4 | eleqtrri 2832 |
. . . . . . . . . . 11
⊢ ∅
∈ 2o |
| 112 | | ineq12 4188 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓 ∩ 𝑔) = (∅ ∩ ∅)) |
| 113 | | 0in 4370 |
. . . . . . . . . . . . 13
⊢ (∅
∩ ∅) = ∅ |
| 114 | 112, 113 | eqtrdi 2785 |
. . . . . . . . . . . 12
⊢ ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓 ∩ 𝑔) = ∅) |
| 115 | 114, 5, 30 | ovmpoa 7557 |
. . . . . . . . . . 11
⊢ ((∅
∈ 2o ∧ ∅ ∈ 2o) → (∅ ·
∅) = ∅) |
| 116 | 111, 111,
115 | mp2an 692 |
. . . . . . . . . 10
⊢ (∅
·
∅) = ∅ |
| 117 | 30 | ovsn2 48731 |
. . . . . . . . . 10
⊢
(∅{〈∅, ∅, ∅〉}∅) =
∅ |
| 118 | 116, 117 | eqtr4i 2760 |
. . . . . . . . 9
⊢ (∅
·
∅) = (∅{〈∅, ∅,
∅〉}∅) |
| 119 | | simpl1 1191 |
. . . . . . . . . . . . 13
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑎 = ∅) |
| 120 | | simpl2 1192 |
. . . . . . . . . . . . 13
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑏 = ∅) |
| 121 | 119, 120 | opeq12d 4855 |
. . . . . . . . . . . 12
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 〈𝑎, 𝑏〉 = 〈∅,
∅〉) |
| 122 | | simpl3 1193 |
. . . . . . . . . . . 12
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑐 = ∅) |
| 123 | 121, 122 | oveq12d 7418 |
. . . . . . . . . . 11
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, · 〉}𝑐) = (〈∅,
∅〉{〈〈∅, ∅〉, ∅, ·
〉}∅)) |
| 124 | 35, 35 | mpoex 8073 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦
(𝑓 ∩ 𝑔)) ∈ V |
| 125 | 5, 124 | eqeltri 2829 |
. . . . . . . . . . . 12
⊢ · ∈
V |
| 126 | 125 | ovsn2 48731 |
. . . . . . . . . . 11
⊢
(〈∅, ∅〉{〈〈∅, ∅〉,
∅, · 〉}∅) =
· |
| 127 | 123, 126 | eqtrdi 2785 |
. . . . . . . . . 10
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, · 〉}𝑐) = · ) |
| 128 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑛 = ∅) |
| 129 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑚 = ∅) |
| 130 | 127, 128,
129 | oveq123d 7421 |
. . . . . . . . 9
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, · 〉}𝑐)𝑚) = (∅ ·
∅)) |
| 131 | 121, 122 | oveq12d 7418 |
. . . . . . . . . . 11
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, {〈∅, ∅, ∅〉}〉}𝑐) = (〈∅,
∅〉{〈〈∅, ∅〉, ∅, {〈∅,
∅, ∅〉}〉}∅)) |
| 132 | | snex 5404 |
. . . . . . . . . . . 12
⊢
{〈∅, ∅, ∅〉} ∈ V |
| 133 | 132 | ovsn2 48731 |
. . . . . . . . . . 11
⊢
(〈∅, ∅〉{〈〈∅, ∅〉,
∅, {〈∅, ∅, ∅〉}〉}∅) =
{〈∅, ∅, ∅〉} |
| 134 | 131, 133 | eqtrdi 2785 |
. . . . . . . . . 10
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, {〈∅, ∅, ∅〉}〉}𝑐) = {〈∅, ∅,
∅〉}) |
| 135 | 134, 128,
129 | oveq123d 7421 |
. . . . . . . . 9
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, {〈∅, ∅, ∅〉}〉}𝑐)𝑚) = (∅{〈∅, ∅,
∅〉}∅)) |
| 136 | 118, 130,
135 | 3eqtr4a 2795 |
. . . . . . . 8
⊢ (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, · 〉}𝑐)𝑚) = (𝑛(〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, {〈∅, ∅, ∅〉}〉}𝑐)𝑚)) |
| 137 | 109, 136 | sylbi 217 |
. . . . . . 7
⊢ (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, · 〉}𝑐)𝑚) = (𝑛(〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, {〈∅, ∅, ∅〉}〉}𝑐)𝑚)) |
| 138 | 137 | adantll 714 |
. . . . . 6
⊢
(((⊤ ∧ (𝑎
∈ {∅} ∧ 𝑏
∈ {∅} ∧ 𝑐
∈ {∅})) ∧ (𝑚
∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, · 〉}𝑐)𝑚) = (𝑛(〈𝑎, 𝑏〉{〈〈∅, ∅〉,
∅, {〈∅, ∅, ∅〉}〉}𝑐)𝑚)) |
| 139 | 84 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 𝐸 ∈
Cat) |
| 140 | 15 | a1i 11 |
. . . . . 6
⊢ (⊤
→ {∅} ⊆ {∅}) |
| 141 | 85, 27, 50, 9, 87, 88, 138, 139, 140 | resccat 48935 |
. . . . 5
⊢ (⊤
→ (𝐷 ∈ Cat ↔
𝐸 ∈
Cat)) |
| 142 | 141 | mptru 1546 |
. . . 4
⊢ (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat) |
| 143 | 84, 142 | mpbir 231 |
. . 3
⊢ 𝐷 ∈ Cat |
| 144 | 58, 79, 143 | 3pm3.2i 1339 |
. 2
⊢ (𝐽 ⊆cat 𝐻 ∧ ¬ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat) |
| 145 | 8, 14, 144 | 3pm3.2i 1339 |
1
⊢ (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat 𝐻 ∧ ¬ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) |