Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setc1onsubc Structured version   Visualization version   GIF version

Theorem setc1onsubc 49713
Description: Construct a category with one object and two morphisms and prove that category (SetCat‘1o) satisfies all conditions for a subcategory but the compatibility of identity morphisms, showing the necessity of the latter condition in defining a subcategory. Exercise 4A of [Adamek] p. 58. (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
setc1onsubc.c 𝐶 = {⟨(Base‘ndx), {∅}⟩, ⟨(Hom ‘ndx), {⟨∅, ∅, 2o⟩}⟩, ⟨(comp‘ndx), {⟨⟨∅, ∅⟩, ∅, · ⟩}⟩}
setc1onsubc.x · = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔))
setc1onsubc.e 𝐸 = (SetCat‘1o)
setc1onsubc.j 𝐽 = (Homf𝐸)
setc1onsubc.s 𝑆 = 1o
setc1onsubc.h 𝐻 = (Homf𝐶)
setc1onsubc.i 1 = (Id‘𝐶)
setc1onsubc.d 𝐷 = (𝐶cat 𝐽)
Assertion
Ref Expression
setc1onsubc (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐶(𝑥,𝑓,𝑔)   𝐷(𝑥,𝑓,𝑔)   𝑆(𝑥,𝑓,𝑔)   · (𝑥,𝑓,𝑔)   1 (𝑥,𝑓,𝑔)   𝐸(𝑥,𝑓,𝑔)   𝐻(𝑥,𝑓,𝑔)   𝐽(𝑥,𝑓,𝑔)

Proof of Theorem setc1onsubc
Dummy variables 𝑦 𝑎 𝑏 𝑐 𝑚 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4347 . . . 4 ∅ ⊆ 1o
2 1oex 8395 . . . 4 1o ∈ V
3 setc1onsubc.c . . . . 5 𝐶 = {⟨(Base‘ndx), {∅}⟩, ⟨(Hom ‘ndx), {⟨∅, ∅, 2o⟩}⟩, ⟨(comp‘ndx), {⟨⟨∅, ∅⟩, ∅, · ⟩}⟩}
4 df2o3 8393 . . . . 5 2o = {∅, 1o}
5 setc1onsubc.x . . . . 5 · = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔))
63, 4, 5incat 49712 . . . 4 ((∅ ⊆ 1o ∧ 1o ∈ V) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o)))
71, 2, 6mp2an 692 . . 3 (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o))
87simpli 483 . 2 𝐶 ∈ Cat
9 setc1onsubc.j . . 3 𝐽 = (Homf𝐸)
10 setc1onsubc.s . . . 4 𝑆 = 1o
11 setc1onsubc.e . . . . 5 𝐸 = (SetCat‘1o)
1211setc1obas 49603 . . . 4 1o = (Base‘𝐸)
1310, 12eqtri 2754 . . 3 𝑆 = (Base‘𝐸)
149, 13homffn 17599 . 2 𝐽 Fn (𝑆 × 𝑆)
15 ssid 3952 . . . 4 {∅} ⊆ {∅}
16 snsspr1 4763 . . . . . 6 {∅} ⊆ {∅, 1o}
1711setc1ohomfval 49604 . . . . . . . . 9 {⟨∅, ∅, 1o⟩} = (Hom ‘𝐸)
18 0lt1o 8419 . . . . . . . . . 10 ∅ ∈ 1o
1918a1i 11 . . . . . . . . 9 (⊤ → ∅ ∈ 1o)
209, 12, 17, 19, 19homfval 17598 . . . . . . . 8 (⊤ → (∅𝐽∅) = (∅{⟨∅, ∅, 1o⟩}∅))
2120mptru 1548 . . . . . . 7 (∅𝐽∅) = (∅{⟨∅, ∅, 1o⟩}∅)
222ovsn2 48971 . . . . . . 7 (∅{⟨∅, ∅, 1o⟩}∅) = 1o
23 df1o2 8392 . . . . . . 7 1o = {∅}
2421, 22, 233eqtri 2758 . . . . . 6 (∅𝐽∅) = {∅}
25 setc1onsubc.h . . . . . . . . 9 𝐻 = (Homf𝐶)
26 snex 5372 . . . . . . . . . 10 {∅} ∈ V
273, 26catbas 49337 . . . . . . . . 9 {∅} = (Base‘𝐶)
28 snex 5372 . . . . . . . . . 10 {⟨∅, ∅, 2o⟩} ∈ V
293, 28cathomfval 49338 . . . . . . . . 9 {⟨∅, ∅, 2o⟩} = (Hom ‘𝐶)
30 0ex 5243 . . . . . . . . . . 11 ∅ ∈ V
3130snid 4612 . . . . . . . . . 10 ∅ ∈ {∅}
3231a1i 11 . . . . . . . . 9 (⊤ → ∅ ∈ {∅})
3325, 27, 29, 32, 32homfval 17598 . . . . . . . 8 (⊤ → (∅𝐻∅) = (∅{⟨∅, ∅, 2o⟩}∅))
3433mptru 1548 . . . . . . 7 (∅𝐻∅) = (∅{⟨∅, ∅, 2o⟩}∅)
35 2oex 8396 . . . . . . . 8 2o ∈ V
3635ovsn2 48971 . . . . . . 7 (∅{⟨∅, ∅, 2o⟩}∅) = 2o
3734, 36, 43eqtri 2758 . . . . . 6 (∅𝐻∅) = {∅, 1o}
3816, 24, 373sstr4i 3981 . . . . 5 (∅𝐽∅) ⊆ (∅𝐻∅)
39 oveq1 7353 . . . . . . . . 9 (𝑝 = ∅ → (𝑝𝐽𝑞) = (∅𝐽𝑞))
40 oveq1 7353 . . . . . . . . 9 (𝑝 = ∅ → (𝑝𝐻𝑞) = (∅𝐻𝑞))
4139, 40sseq12d 3963 . . . . . . . 8 (𝑝 = ∅ → ((𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽𝑞) ⊆ (∅𝐻𝑞)))
4241ralbidv 3155 . . . . . . 7 (𝑝 = ∅ → (∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞)))
4330, 42ralsn 4631 . . . . . 6 (∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞))
44 oveq2 7354 . . . . . . . 8 (𝑞 = ∅ → (∅𝐽𝑞) = (∅𝐽∅))
45 oveq2 7354 . . . . . . . 8 (𝑞 = ∅ → (∅𝐻𝑞) = (∅𝐻∅))
4644, 45sseq12d 3963 . . . . . . 7 (𝑞 = ∅ → ((∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅)))
4730, 46ralsn 4631 . . . . . 6 (∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅))
4843, 47bitri 275 . . . . 5 (∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅))
4938, 48mpbir 231 . . . 4 𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)
5023, 12eqtr3i 2756 . . . . . . . 8 {∅} = (Base‘𝐸)
519, 50homffn 17599 . . . . . . 7 𝐽 Fn ({∅} × {∅})
5251a1i 11 . . . . . 6 (⊤ → 𝐽 Fn ({∅} × {∅}))
5325, 27homffn 17599 . . . . . . 7 𝐻 Fn ({∅} × {∅})
5453a1i 11 . . . . . 6 (⊤ → 𝐻 Fn ({∅} × {∅}))
5526a1i 11 . . . . . 6 (⊤ → {∅} ∈ V)
5652, 54, 55isssc 17727 . . . . 5 (⊤ → (𝐽cat 𝐻 ↔ ({∅} ⊆ {∅} ∧ ∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))))
5756mptru 1548 . . . 4 (𝐽cat 𝐻 ↔ ({∅} ⊆ {∅} ∧ ∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)))
5815, 49, 57mpbir2an 711 . . 3 𝐽cat 𝐻
59 elirr 9485 . . . 4 ¬ {∅} ∈ {∅}
6010, 23eqtri 2754 . . . . . 6 𝑆 = {∅}
61 biid 261 . . . . . 6 (¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥))
6260, 61rexeqbii 3311 . . . . 5 (∃𝑥𝑆 ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ∃𝑥 ∈ {∅} ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥))
63 rexnal 3084 . . . . 5 (∃𝑥𝑆 ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
64 fveq2 6822 . . . . . . . . 9 (𝑥 = ∅ → ( 1𝑥) = ( 1 ‘∅))
6523a1i 11 . . . . . . . . . . 11 (𝑦 = ∅ → 1o = {∅})
66 setc1onsubc.i . . . . . . . . . . . 12 1 = (Id‘𝐶)
677simpri 485 . . . . . . . . . . . 12 (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o)
6866, 67eqtri 2754 . . . . . . . . . . 11 1 = (𝑦 ∈ {∅} ↦ 1o)
6965, 68, 26fvmpt 6929 . . . . . . . . . 10 (∅ ∈ {∅} → ( 1 ‘∅) = {∅})
7031, 69ax-mp 5 . . . . . . . . 9 ( 1 ‘∅) = {∅}
7164, 70eqtrdi 2782 . . . . . . . 8 (𝑥 = ∅ → ( 1𝑥) = {∅})
72 oveq12 7355 . . . . . . . . . 10 ((𝑥 = ∅ ∧ 𝑥 = ∅) → (𝑥𝐽𝑥) = (∅𝐽∅))
7372anidms 566 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝐽𝑥) = (∅𝐽∅))
7473, 24eqtrdi 2782 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝐽𝑥) = {∅})
7571, 74eleq12d 2825 . . . . . . 7 (𝑥 = ∅ → (( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ {∅} ∈ {∅}))
7675notbid 318 . . . . . 6 (𝑥 = ∅ → (¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈ {∅}))
7730, 76rexsn 4632 . . . . 5 (∃𝑥 ∈ {∅} ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈ {∅})
7862, 63, 773bitr3ri 302 . . . 4 (¬ {∅} ∈ {∅} ↔ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
7959, 78mpbi 230 . . 3 ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥)
80 setc1oterm 49602 . . . . . . . 8 (SetCat‘1o) ∈ TermCat
8180a1i 11 . . . . . . 7 (⊤ → (SetCat‘1o) ∈ TermCat)
8281termccd 49590 . . . . . 6 (⊤ → (SetCat‘1o) ∈ Cat)
8382mptru 1548 . . . . 5 (SetCat‘1o) ∈ Cat
8411, 83eqeltri 2827 . . . 4 𝐸 ∈ Cat
85 setc1onsubc.d . . . . . 6 𝐷 = (𝐶cat 𝐽)
86 snex 5372 . . . . . . 7 {⟨⟨∅, ∅⟩, ∅, · ⟩} ∈ V
873, 86catcofval 49339 . . . . . 6 {⟨⟨∅, ∅⟩, ∅, · ⟩} = (comp‘𝐶)
8811setc1ocofval 49605 . . . . . 6 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘𝐸)
89 velsn 4589 . . . . . . . . . . 11 (𝑎 ∈ {∅} ↔ 𝑎 = ∅)
90 velsn 4589 . . . . . . . . . . 11 (𝑏 ∈ {∅} ↔ 𝑏 = ∅)
91 velsn 4589 . . . . . . . . . . 11 (𝑐 ∈ {∅} ↔ 𝑐 = ∅)
9289, 90, 913anbi123i 1155 . . . . . . . . . 10 ((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ↔ (𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅))
9392anbi1i 624 . . . . . . . . 9 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))))
94 simp1 1136 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑎 = ∅)
95 simp2 1137 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑏 = ∅)
9694, 95oveq12d 7364 . . . . . . . . . . . . . 14 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = (∅𝐽∅))
9796, 24eqtrdi 2782 . . . . . . . . . . . . 13 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = {∅})
9897eleq2d 2817 . . . . . . . . . . . 12 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 ∈ {∅}))
99 velsn 4589 . . . . . . . . . . . 12 (𝑚 ∈ {∅} ↔ 𝑚 = ∅)
10098, 99bitrdi 287 . . . . . . . . . . 11 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 = ∅))
101 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑐 = ∅)
10295, 101oveq12d 7364 . . . . . . . . . . . . . 14 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = (∅𝐽∅))
103102, 24eqtrdi 2782 . . . . . . . . . . . . 13 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = {∅})
104103eleq2d 2817 . . . . . . . . . . . 12 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 ∈ {∅}))
105 velsn 4589 . . . . . . . . . . . 12 (𝑛 ∈ {∅} ↔ 𝑛 = ∅)
106104, 105bitrdi 287 . . . . . . . . . . 11 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 = ∅))
107100, 106anbi12d 632 . . . . . . . . . 10 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → ((𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐)) ↔ (𝑚 = ∅ ∧ 𝑛 = ∅)))
108107pm5.32i 574 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)))
10993, 108bitri 275 . . . . . . . 8 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)))
11030prid1 4712 . . . . . . . . . . . 12 ∅ ∈ {∅, 1o}
111110, 4eleqtrri 2830 . . . . . . . . . . 11 ∅ ∈ 2o
112 ineq12 4162 . . . . . . . . . . . . 13 ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓𝑔) = (∅ ∩ ∅))
113 0in 4344 . . . . . . . . . . . . 13 (∅ ∩ ∅) = ∅
114112, 113eqtrdi 2782 . . . . . . . . . . . 12 ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓𝑔) = ∅)
115114, 5, 30ovmpoa 7501 . . . . . . . . . . 11 ((∅ ∈ 2o ∧ ∅ ∈ 2o) → (∅ · ∅) = ∅)
116111, 111, 115mp2an 692 . . . . . . . . . 10 (∅ · ∅) = ∅
11730ovsn2 48971 . . . . . . . . . 10 (∅{⟨∅, ∅, ∅⟩}∅) = ∅
118116, 117eqtr4i 2757 . . . . . . . . 9 (∅ · ∅) = (∅{⟨∅, ∅, ∅⟩}∅)
119 simpl1 1192 . . . . . . . . . . . . 13 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑎 = ∅)
120 simpl2 1193 . . . . . . . . . . . . 13 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑏 = ∅)
121119, 120opeq12d 4830 . . . . . . . . . . . 12 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → ⟨𝑎, 𝑏⟩ = ⟨∅, ∅⟩)
122 simpl3 1194 . . . . . . . . . . . 12 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑐 = ∅)
123121, 122oveq12d 7364 . . . . . . . . . . 11 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}∅))
12435, 35mpoex 8011 . . . . . . . . . . . . 13 (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔)) ∈ V
1255, 124eqeltri 2827 . . . . . . . . . . . 12 · ∈ V
126125ovsn2 48971 . . . . . . . . . . 11 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}∅) = ·
127123, 126eqtrdi 2782 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐) = · )
128 simprr 772 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑛 = ∅)
129 simprl 770 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑚 = ∅)
130127, 128, 129oveq123d 7367 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (∅ · ∅))
131121, 122oveq12d 7364 . . . . . . . . . . 11 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅))
132 snex 5372 . . . . . . . . . . . 12 {⟨∅, ∅, ∅⟩} ∈ V
133132ovsn2 48971 . . . . . . . . . . 11 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅) = {⟨∅, ∅, ∅⟩}
134131, 133eqtrdi 2782 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐) = {⟨∅, ∅, ∅⟩})
135134, 128, 129oveq123d 7367 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚) = (∅{⟨∅, ∅, ∅⟩}∅))
136118, 130, 1353eqtr4a 2792 . . . . . . . 8 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
137109, 136sylbi 217 . . . . . . 7 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
138137adantll 714 . . . . . 6 (((⊤ ∧ (𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅})) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
13984a1i 11 . . . . . 6 (⊤ → 𝐸 ∈ Cat)
14015a1i 11 . . . . . 6 (⊤ → {∅} ⊆ {∅})
14185, 27, 50, 9, 87, 88, 138, 139, 140resccat 49185 . . . . 5 (⊤ → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat))
142141mptru 1548 . . . 4 (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)
14384, 142mpbir 231 . . 3 𝐷 ∈ Cat
14458, 79, 1433pm3.2i 1340 . 2 (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)
1458, 14, 1443pm3.2i 1340 1 (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  c0 4280  {csn 4573  {cpr 4575  {ctp 4577  cop 4579  cotp 4581   class class class wbr 5089  cmpt 5170   × cxp 5612   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  2oc2o 8379  ndxcnx 17104  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  Homf chomf 17572  cat cssc 17714  cat cresc 17715  SetCatcsetc 17982  TermCatctermc 49583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-homf 17576  df-comf 17577  df-ssc 17717  df-resc 17718  df-setc 17983  df-thinc 49529  df-termc 49584
This theorem is referenced by:  cnelsubc  49715
  Copyright terms: Public domain W3C validator