Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setc1onsubc Structured version   Visualization version   GIF version

Theorem setc1onsubc 49340
Description: Construct a category with one object and two morphisms and prove that category (SetCat‘1o) satisfies all conditions for a subcategory but the compatibility of identity morphisms, showing the necessity of the latter condition in defining a subcategory. Exercise 4A of [Adamek] p. 58. (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
setc1onsubc.c 𝐶 = {⟨(Base‘ndx), {∅}⟩, ⟨(Hom ‘ndx), {⟨∅, ∅, 2o⟩}⟩, ⟨(comp‘ndx), {⟨⟨∅, ∅⟩, ∅, · ⟩}⟩}
setc1onsubc.x · = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔))
setc1onsubc.e 𝐸 = (SetCat‘1o)
setc1onsubc.j 𝐽 = (Homf𝐸)
setc1onsubc.s 𝑆 = 1o
setc1onsubc.h 𝐻 = (Homf𝐶)
setc1onsubc.i 1 = (Id‘𝐶)
setc1onsubc.d 𝐷 = (𝐶cat 𝐽)
Assertion
Ref Expression
setc1onsubc (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐶(𝑥,𝑓,𝑔)   𝐷(𝑥,𝑓,𝑔)   𝑆(𝑥,𝑓,𝑔)   · (𝑥,𝑓,𝑔)   1 (𝑥,𝑓,𝑔)   𝐸(𝑥,𝑓,𝑔)   𝐻(𝑥,𝑓,𝑔)   𝐽(𝑥,𝑓,𝑔)

Proof of Theorem setc1onsubc
Dummy variables 𝑦 𝑎 𝑏 𝑐 𝑚 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4373 . . . 4 ∅ ⊆ 1o
2 1oex 8485 . . . 4 1o ∈ V
3 setc1onsubc.c . . . . 5 𝐶 = {⟨(Base‘ndx), {∅}⟩, ⟨(Hom ‘ndx), {⟨∅, ∅, 2o⟩}⟩, ⟨(comp‘ndx), {⟨⟨∅, ∅⟩, ∅, · ⟩}⟩}
4 df2o3 8483 . . . . 5 2o = {∅, 1o}
5 setc1onsubc.x . . . . 5 · = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔))
63, 4, 5incat 49339 . . . 4 ((∅ ⊆ 1o ∧ 1o ∈ V) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o)))
71, 2, 6mp2an 692 . . 3 (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o))
87simpli 483 . 2 𝐶 ∈ Cat
9 setc1onsubc.j . . 3 𝐽 = (Homf𝐸)
10 setc1onsubc.s . . . 4 𝑆 = 1o
11 setc1onsubc.e . . . . 5 𝐸 = (SetCat‘1o)
1211setc1obas 49238 . . . 4 1o = (Base‘𝐸)
1310, 12eqtri 2757 . . 3 𝑆 = (Base‘𝐸)
149, 13homffn 17692 . 2 𝐽 Fn (𝑆 × 𝑆)
15 ssid 3979 . . . 4 {∅} ⊆ {∅}
16 snsspr1 4788 . . . . . 6 {∅} ⊆ {∅, 1o}
1711setc1ohomfval 49239 . . . . . . . . 9 {⟨∅, ∅, 1o⟩} = (Hom ‘𝐸)
18 0lt1o 8511 . . . . . . . . . 10 ∅ ∈ 1o
1918a1i 11 . . . . . . . . 9 (⊤ → ∅ ∈ 1o)
209, 12, 17, 19, 19homfval 17691 . . . . . . . 8 (⊤ → (∅𝐽∅) = (∅{⟨∅, ∅, 1o⟩}∅))
2120mptru 1546 . . . . . . 7 (∅𝐽∅) = (∅{⟨∅, ∅, 1o⟩}∅)
222ovsn2 48731 . . . . . . 7 (∅{⟨∅, ∅, 1o⟩}∅) = 1o
23 df1o2 8482 . . . . . . 7 1o = {∅}
2421, 22, 233eqtri 2761 . . . . . 6 (∅𝐽∅) = {∅}
25 setc1onsubc.h . . . . . . . . 9 𝐻 = (Homf𝐶)
26 snex 5404 . . . . . . . . . 10 {∅} ∈ V
273, 26catbas 49009 . . . . . . . . 9 {∅} = (Base‘𝐶)
28 snex 5404 . . . . . . . . . 10 {⟨∅, ∅, 2o⟩} ∈ V
293, 28cathomfval 49010 . . . . . . . . 9 {⟨∅, ∅, 2o⟩} = (Hom ‘𝐶)
30 0ex 5275 . . . . . . . . . . 11 ∅ ∈ V
3130snid 4636 . . . . . . . . . 10 ∅ ∈ {∅}
3231a1i 11 . . . . . . . . 9 (⊤ → ∅ ∈ {∅})
3325, 27, 29, 32, 32homfval 17691 . . . . . . . 8 (⊤ → (∅𝐻∅) = (∅{⟨∅, ∅, 2o⟩}∅))
3433mptru 1546 . . . . . . 7 (∅𝐻∅) = (∅{⟨∅, ∅, 2o⟩}∅)
35 2oex 8486 . . . . . . . 8 2o ∈ V
3635ovsn2 48731 . . . . . . 7 (∅{⟨∅, ∅, 2o⟩}∅) = 2o
3734, 36, 43eqtri 2761 . . . . . 6 (∅𝐻∅) = {∅, 1o}
3816, 24, 373sstr4i 4008 . . . . 5 (∅𝐽∅) ⊆ (∅𝐻∅)
39 oveq1 7407 . . . . . . . . 9 (𝑝 = ∅ → (𝑝𝐽𝑞) = (∅𝐽𝑞))
40 oveq1 7407 . . . . . . . . 9 (𝑝 = ∅ → (𝑝𝐻𝑞) = (∅𝐻𝑞))
4139, 40sseq12d 3990 . . . . . . . 8 (𝑝 = ∅ → ((𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽𝑞) ⊆ (∅𝐻𝑞)))
4241ralbidv 3161 . . . . . . 7 (𝑝 = ∅ → (∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞)))
4330, 42ralsn 4655 . . . . . 6 (∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞))
44 oveq2 7408 . . . . . . . 8 (𝑞 = ∅ → (∅𝐽𝑞) = (∅𝐽∅))
45 oveq2 7408 . . . . . . . 8 (𝑞 = ∅ → (∅𝐻𝑞) = (∅𝐻∅))
4644, 45sseq12d 3990 . . . . . . 7 (𝑞 = ∅ → ((∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅)))
4730, 46ralsn 4655 . . . . . 6 (∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅))
4843, 47bitri 275 . . . . 5 (∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅))
4938, 48mpbir 231 . . . 4 𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)
5023, 12eqtr3i 2759 . . . . . . . 8 {∅} = (Base‘𝐸)
519, 50homffn 17692 . . . . . . 7 𝐽 Fn ({∅} × {∅})
5251a1i 11 . . . . . 6 (⊤ → 𝐽 Fn ({∅} × {∅}))
5325, 27homffn 17692 . . . . . . 7 𝐻 Fn ({∅} × {∅})
5453a1i 11 . . . . . 6 (⊤ → 𝐻 Fn ({∅} × {∅}))
5526a1i 11 . . . . . 6 (⊤ → {∅} ∈ V)
5652, 54, 55isssc 17820 . . . . 5 (⊤ → (𝐽cat 𝐻 ↔ ({∅} ⊆ {∅} ∧ ∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))))
5756mptru 1546 . . . 4 (𝐽cat 𝐻 ↔ ({∅} ⊆ {∅} ∧ ∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)))
5815, 49, 57mpbir2an 711 . . 3 𝐽cat 𝐻
59 elirr 9604 . . . 4 ¬ {∅} ∈ {∅}
6010, 23eqtri 2757 . . . . . 6 𝑆 = {∅}
61 biid 261 . . . . . 6 (¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥))
6260, 61rexeqbii 3322 . . . . 5 (∃𝑥𝑆 ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ∃𝑥 ∈ {∅} ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥))
63 rexnal 3088 . . . . 5 (∃𝑥𝑆 ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
64 fveq2 6873 . . . . . . . . 9 (𝑥 = ∅ → ( 1𝑥) = ( 1 ‘∅))
6523a1i 11 . . . . . . . . . . 11 (𝑦 = ∅ → 1o = {∅})
66 setc1onsubc.i . . . . . . . . . . . 12 1 = (Id‘𝐶)
677simpri 485 . . . . . . . . . . . 12 (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o)
6866, 67eqtri 2757 . . . . . . . . . . 11 1 = (𝑦 ∈ {∅} ↦ 1o)
6965, 68, 26fvmpt 6983 . . . . . . . . . 10 (∅ ∈ {∅} → ( 1 ‘∅) = {∅})
7031, 69ax-mp 5 . . . . . . . . 9 ( 1 ‘∅) = {∅}
7164, 70eqtrdi 2785 . . . . . . . 8 (𝑥 = ∅ → ( 1𝑥) = {∅})
72 oveq12 7409 . . . . . . . . . 10 ((𝑥 = ∅ ∧ 𝑥 = ∅) → (𝑥𝐽𝑥) = (∅𝐽∅))
7372anidms 566 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝐽𝑥) = (∅𝐽∅))
7473, 24eqtrdi 2785 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝐽𝑥) = {∅})
7571, 74eleq12d 2827 . . . . . . 7 (𝑥 = ∅ → (( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ {∅} ∈ {∅}))
7675notbid 318 . . . . . 6 (𝑥 = ∅ → (¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈ {∅}))
7730, 76rexsn 4656 . . . . 5 (∃𝑥 ∈ {∅} ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈ {∅})
7862, 63, 773bitr3ri 302 . . . 4 (¬ {∅} ∈ {∅} ↔ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
7959, 78mpbi 230 . . 3 ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥)
80 setc1oterm 49237 . . . . . . . 8 (SetCat‘1o) ∈ TermCat
8180a1i 11 . . . . . . 7 (⊤ → (SetCat‘1o) ∈ TermCat)
8281termccd 49226 . . . . . 6 (⊤ → (SetCat‘1o) ∈ Cat)
8382mptru 1546 . . . . 5 (SetCat‘1o) ∈ Cat
8411, 83eqeltri 2829 . . . 4 𝐸 ∈ Cat
85 setc1onsubc.d . . . . . 6 𝐷 = (𝐶cat 𝐽)
86 snex 5404 . . . . . . 7 {⟨⟨∅, ∅⟩, ∅, · ⟩} ∈ V
873, 86catcofval 49011 . . . . . 6 {⟨⟨∅, ∅⟩, ∅, · ⟩} = (comp‘𝐶)
8811setc1ocofval 49240 . . . . . 6 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘𝐸)
89 velsn 4615 . . . . . . . . . . 11 (𝑎 ∈ {∅} ↔ 𝑎 = ∅)
90 velsn 4615 . . . . . . . . . . 11 (𝑏 ∈ {∅} ↔ 𝑏 = ∅)
91 velsn 4615 . . . . . . . . . . 11 (𝑐 ∈ {∅} ↔ 𝑐 = ∅)
9289, 90, 913anbi123i 1155 . . . . . . . . . 10 ((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ↔ (𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅))
9392anbi1i 624 . . . . . . . . 9 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))))
94 simp1 1136 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑎 = ∅)
95 simp2 1137 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑏 = ∅)
9694, 95oveq12d 7418 . . . . . . . . . . . . . 14 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = (∅𝐽∅))
9796, 24eqtrdi 2785 . . . . . . . . . . . . 13 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = {∅})
9897eleq2d 2819 . . . . . . . . . . . 12 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 ∈ {∅}))
99 velsn 4615 . . . . . . . . . . . 12 (𝑚 ∈ {∅} ↔ 𝑚 = ∅)
10098, 99bitrdi 287 . . . . . . . . . . 11 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 = ∅))
101 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑐 = ∅)
10295, 101oveq12d 7418 . . . . . . . . . . . . . 14 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = (∅𝐽∅))
103102, 24eqtrdi 2785 . . . . . . . . . . . . 13 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = {∅})
104103eleq2d 2819 . . . . . . . . . . . 12 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 ∈ {∅}))
105 velsn 4615 . . . . . . . . . . . 12 (𝑛 ∈ {∅} ↔ 𝑛 = ∅)
106104, 105bitrdi 287 . . . . . . . . . . 11 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 = ∅))
107100, 106anbi12d 632 . . . . . . . . . 10 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → ((𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐)) ↔ (𝑚 = ∅ ∧ 𝑛 = ∅)))
108107pm5.32i 574 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)))
10993, 108bitri 275 . . . . . . . 8 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)))
11030prid1 4736 . . . . . . . . . . . 12 ∅ ∈ {∅, 1o}
111110, 4eleqtrri 2832 . . . . . . . . . . 11 ∅ ∈ 2o
112 ineq12 4188 . . . . . . . . . . . . 13 ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓𝑔) = (∅ ∩ ∅))
113 0in 4370 . . . . . . . . . . . . 13 (∅ ∩ ∅) = ∅
114112, 113eqtrdi 2785 . . . . . . . . . . . 12 ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓𝑔) = ∅)
115114, 5, 30ovmpoa 7557 . . . . . . . . . . 11 ((∅ ∈ 2o ∧ ∅ ∈ 2o) → (∅ · ∅) = ∅)
116111, 111, 115mp2an 692 . . . . . . . . . 10 (∅ · ∅) = ∅
11730ovsn2 48731 . . . . . . . . . 10 (∅{⟨∅, ∅, ∅⟩}∅) = ∅
118116, 117eqtr4i 2760 . . . . . . . . 9 (∅ · ∅) = (∅{⟨∅, ∅, ∅⟩}∅)
119 simpl1 1191 . . . . . . . . . . . . 13 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑎 = ∅)
120 simpl2 1192 . . . . . . . . . . . . 13 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑏 = ∅)
121119, 120opeq12d 4855 . . . . . . . . . . . 12 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → ⟨𝑎, 𝑏⟩ = ⟨∅, ∅⟩)
122 simpl3 1193 . . . . . . . . . . . 12 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑐 = ∅)
123121, 122oveq12d 7418 . . . . . . . . . . 11 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}∅))
12435, 35mpoex 8073 . . . . . . . . . . . . 13 (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔)) ∈ V
1255, 124eqeltri 2829 . . . . . . . . . . . 12 · ∈ V
126125ovsn2 48731 . . . . . . . . . . 11 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}∅) = ·
127123, 126eqtrdi 2785 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐) = · )
128 simprr 772 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑛 = ∅)
129 simprl 770 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑚 = ∅)
130127, 128, 129oveq123d 7421 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (∅ · ∅))
131121, 122oveq12d 7418 . . . . . . . . . . 11 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅))
132 snex 5404 . . . . . . . . . . . 12 {⟨∅, ∅, ∅⟩} ∈ V
133132ovsn2 48731 . . . . . . . . . . 11 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅) = {⟨∅, ∅, ∅⟩}
134131, 133eqtrdi 2785 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐) = {⟨∅, ∅, ∅⟩})
135134, 128, 129oveq123d 7421 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚) = (∅{⟨∅, ∅, ∅⟩}∅))
136118, 130, 1353eqtr4a 2795 . . . . . . . 8 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
137109, 136sylbi 217 . . . . . . 7 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
138137adantll 714 . . . . . 6 (((⊤ ∧ (𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅})) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
13984a1i 11 . . . . . 6 (⊤ → 𝐸 ∈ Cat)
14015a1i 11 . . . . . 6 (⊤ → {∅} ⊆ {∅})
14185, 27, 50, 9, 87, 88, 138, 139, 140resccat 48935 . . . . 5 (⊤ → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat))
142141mptru 1546 . . . 4 (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)
14384, 142mpbir 231 . . 3 𝐷 ∈ Cat
14458, 79, 1433pm3.2i 1339 . 2 (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)
1458, 14, 1443pm3.2i 1339 1 (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1539  wtru 1540  wcel 2107  wral 3050  wrex 3059  Vcvv 3457  cin 3923  wss 3924  c0 4306  {csn 4599  {cpr 4601  {ctp 4603  cop 4605  cotp 4607   class class class wbr 5117  cmpt 5199   × cxp 5650   Fn wfn 6523  cfv 6528  (class class class)co 7400  cmpo 7402  1oc1o 8468  2oc2o 8469  ndxcnx 17199  Basecbs 17215  Hom chom 17269  compcco 17270  Catccat 17663  Idccid 17664  Homf chomf 17665  cat cssc 17807  cat cresc 17808  SetCatcsetc 18075  TermCatctermc 49219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-reg 9599  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-ot 4608  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-er 8714  df-map 8837  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-fz 13515  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-hom 17282  df-cco 17283  df-cat 17667  df-cid 17668  df-homf 17669  df-comf 17670  df-ssc 17810  df-resc 17811  df-setc 18076  df-thinc 49167  df-termc 49220
This theorem is referenced by:  cnelsubc  49342
  Copyright terms: Public domain W3C validator