Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setc1onsubc Structured version   Visualization version   GIF version

Theorem setc1onsubc 49584
Description: Construct a category with one object and two morphisms and prove that category (SetCat‘1o) satisfies all conditions for a subcategory but the compatibility of identity morphisms, showing the necessity of the latter condition in defining a subcategory. Exercise 4A of [Adamek] p. 58. (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
setc1onsubc.c 𝐶 = {⟨(Base‘ndx), {∅}⟩, ⟨(Hom ‘ndx), {⟨∅, ∅, 2o⟩}⟩, ⟨(comp‘ndx), {⟨⟨∅, ∅⟩, ∅, · ⟩}⟩}
setc1onsubc.x · = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔))
setc1onsubc.e 𝐸 = (SetCat‘1o)
setc1onsubc.j 𝐽 = (Homf𝐸)
setc1onsubc.s 𝑆 = 1o
setc1onsubc.h 𝐻 = (Homf𝐶)
setc1onsubc.i 1 = (Id‘𝐶)
setc1onsubc.d 𝐷 = (𝐶cat 𝐽)
Assertion
Ref Expression
setc1onsubc (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐶(𝑥,𝑓,𝑔)   𝐷(𝑥,𝑓,𝑔)   𝑆(𝑥,𝑓,𝑔)   · (𝑥,𝑓,𝑔)   1 (𝑥,𝑓,𝑔)   𝐸(𝑥,𝑓,𝑔)   𝐻(𝑥,𝑓,𝑔)   𝐽(𝑥,𝑓,𝑔)

Proof of Theorem setc1onsubc
Dummy variables 𝑦 𝑎 𝑏 𝑐 𝑚 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4359 . . . 4 ∅ ⊆ 1o
2 1oex 8421 . . . 4 1o ∈ V
3 setc1onsubc.c . . . . 5 𝐶 = {⟨(Base‘ndx), {∅}⟩, ⟨(Hom ‘ndx), {⟨∅, ∅, 2o⟩}⟩, ⟨(comp‘ndx), {⟨⟨∅, ∅⟩, ∅, · ⟩}⟩}
4 df2o3 8419 . . . . 5 2o = {∅, 1o}
5 setc1onsubc.x . . . . 5 · = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔))
63, 4, 5incat 49583 . . . 4 ((∅ ⊆ 1o ∧ 1o ∈ V) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o)))
71, 2, 6mp2an 692 . . 3 (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o))
87simpli 483 . 2 𝐶 ∈ Cat
9 setc1onsubc.j . . 3 𝐽 = (Homf𝐸)
10 setc1onsubc.s . . . 4 𝑆 = 1o
11 setc1onsubc.e . . . . 5 𝐸 = (SetCat‘1o)
1211setc1obas 49474 . . . 4 1o = (Base‘𝐸)
1310, 12eqtri 2752 . . 3 𝑆 = (Base‘𝐸)
149, 13homffn 17634 . 2 𝐽 Fn (𝑆 × 𝑆)
15 ssid 3966 . . . 4 {∅} ⊆ {∅}
16 snsspr1 4774 . . . . . 6 {∅} ⊆ {∅, 1o}
1711setc1ohomfval 49475 . . . . . . . . 9 {⟨∅, ∅, 1o⟩} = (Hom ‘𝐸)
18 0lt1o 8445 . . . . . . . . . 10 ∅ ∈ 1o
1918a1i 11 . . . . . . . . 9 (⊤ → ∅ ∈ 1o)
209, 12, 17, 19, 19homfval 17633 . . . . . . . 8 (⊤ → (∅𝐽∅) = (∅{⟨∅, ∅, 1o⟩}∅))
2120mptru 1547 . . . . . . 7 (∅𝐽∅) = (∅{⟨∅, ∅, 1o⟩}∅)
222ovsn2 48842 . . . . . . 7 (∅{⟨∅, ∅, 1o⟩}∅) = 1o
23 df1o2 8418 . . . . . . 7 1o = {∅}
2421, 22, 233eqtri 2756 . . . . . 6 (∅𝐽∅) = {∅}
25 setc1onsubc.h . . . . . . . . 9 𝐻 = (Homf𝐶)
26 snex 5386 . . . . . . . . . 10 {∅} ∈ V
273, 26catbas 49208 . . . . . . . . 9 {∅} = (Base‘𝐶)
28 snex 5386 . . . . . . . . . 10 {⟨∅, ∅, 2o⟩} ∈ V
293, 28cathomfval 49209 . . . . . . . . 9 {⟨∅, ∅, 2o⟩} = (Hom ‘𝐶)
30 0ex 5257 . . . . . . . . . . 11 ∅ ∈ V
3130snid 4622 . . . . . . . . . 10 ∅ ∈ {∅}
3231a1i 11 . . . . . . . . 9 (⊤ → ∅ ∈ {∅})
3325, 27, 29, 32, 32homfval 17633 . . . . . . . 8 (⊤ → (∅𝐻∅) = (∅{⟨∅, ∅, 2o⟩}∅))
3433mptru 1547 . . . . . . 7 (∅𝐻∅) = (∅{⟨∅, ∅, 2o⟩}∅)
35 2oex 8422 . . . . . . . 8 2o ∈ V
3635ovsn2 48842 . . . . . . 7 (∅{⟨∅, ∅, 2o⟩}∅) = 2o
3734, 36, 43eqtri 2756 . . . . . 6 (∅𝐻∅) = {∅, 1o}
3816, 24, 373sstr4i 3995 . . . . 5 (∅𝐽∅) ⊆ (∅𝐻∅)
39 oveq1 7376 . . . . . . . . 9 (𝑝 = ∅ → (𝑝𝐽𝑞) = (∅𝐽𝑞))
40 oveq1 7376 . . . . . . . . 9 (𝑝 = ∅ → (𝑝𝐻𝑞) = (∅𝐻𝑞))
4139, 40sseq12d 3977 . . . . . . . 8 (𝑝 = ∅ → ((𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽𝑞) ⊆ (∅𝐻𝑞)))
4241ralbidv 3156 . . . . . . 7 (𝑝 = ∅ → (∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞)))
4330, 42ralsn 4641 . . . . . 6 (∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞))
44 oveq2 7377 . . . . . . . 8 (𝑞 = ∅ → (∅𝐽𝑞) = (∅𝐽∅))
45 oveq2 7377 . . . . . . . 8 (𝑞 = ∅ → (∅𝐻𝑞) = (∅𝐻∅))
4644, 45sseq12d 3977 . . . . . . 7 (𝑞 = ∅ → ((∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅)))
4730, 46ralsn 4641 . . . . . 6 (∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅))
4843, 47bitri 275 . . . . 5 (∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅))
4938, 48mpbir 231 . . . 4 𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)
5023, 12eqtr3i 2754 . . . . . . . 8 {∅} = (Base‘𝐸)
519, 50homffn 17634 . . . . . . 7 𝐽 Fn ({∅} × {∅})
5251a1i 11 . . . . . 6 (⊤ → 𝐽 Fn ({∅} × {∅}))
5325, 27homffn 17634 . . . . . . 7 𝐻 Fn ({∅} × {∅})
5453a1i 11 . . . . . 6 (⊤ → 𝐻 Fn ({∅} × {∅}))
5526a1i 11 . . . . . 6 (⊤ → {∅} ∈ V)
5652, 54, 55isssc 17762 . . . . 5 (⊤ → (𝐽cat 𝐻 ↔ ({∅} ⊆ {∅} ∧ ∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))))
5756mptru 1547 . . . 4 (𝐽cat 𝐻 ↔ ({∅} ⊆ {∅} ∧ ∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)))
5815, 49, 57mpbir2an 711 . . 3 𝐽cat 𝐻
59 elirr 9526 . . . 4 ¬ {∅} ∈ {∅}
6010, 23eqtri 2752 . . . . . 6 𝑆 = {∅}
61 biid 261 . . . . . 6 (¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥))
6260, 61rexeqbii 3315 . . . . 5 (∃𝑥𝑆 ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ∃𝑥 ∈ {∅} ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥))
63 rexnal 3082 . . . . 5 (∃𝑥𝑆 ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
64 fveq2 6840 . . . . . . . . 9 (𝑥 = ∅ → ( 1𝑥) = ( 1 ‘∅))
6523a1i 11 . . . . . . . . . . 11 (𝑦 = ∅ → 1o = {∅})
66 setc1onsubc.i . . . . . . . . . . . 12 1 = (Id‘𝐶)
677simpri 485 . . . . . . . . . . . 12 (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o)
6866, 67eqtri 2752 . . . . . . . . . . 11 1 = (𝑦 ∈ {∅} ↦ 1o)
6965, 68, 26fvmpt 6950 . . . . . . . . . 10 (∅ ∈ {∅} → ( 1 ‘∅) = {∅})
7031, 69ax-mp 5 . . . . . . . . 9 ( 1 ‘∅) = {∅}
7164, 70eqtrdi 2780 . . . . . . . 8 (𝑥 = ∅ → ( 1𝑥) = {∅})
72 oveq12 7378 . . . . . . . . . 10 ((𝑥 = ∅ ∧ 𝑥 = ∅) → (𝑥𝐽𝑥) = (∅𝐽∅))
7372anidms 566 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝐽𝑥) = (∅𝐽∅))
7473, 24eqtrdi 2780 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝐽𝑥) = {∅})
7571, 74eleq12d 2822 . . . . . . 7 (𝑥 = ∅ → (( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ {∅} ∈ {∅}))
7675notbid 318 . . . . . 6 (𝑥 = ∅ → (¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈ {∅}))
7730, 76rexsn 4642 . . . . 5 (∃𝑥 ∈ {∅} ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈ {∅})
7862, 63, 773bitr3ri 302 . . . 4 (¬ {∅} ∈ {∅} ↔ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
7959, 78mpbi 230 . . 3 ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥)
80 setc1oterm 49473 . . . . . . . 8 (SetCat‘1o) ∈ TermCat
8180a1i 11 . . . . . . 7 (⊤ → (SetCat‘1o) ∈ TermCat)
8281termccd 49461 . . . . . 6 (⊤ → (SetCat‘1o) ∈ Cat)
8382mptru 1547 . . . . 5 (SetCat‘1o) ∈ Cat
8411, 83eqeltri 2824 . . . 4 𝐸 ∈ Cat
85 setc1onsubc.d . . . . . 6 𝐷 = (𝐶cat 𝐽)
86 snex 5386 . . . . . . 7 {⟨⟨∅, ∅⟩, ∅, · ⟩} ∈ V
873, 86catcofval 49210 . . . . . 6 {⟨⟨∅, ∅⟩, ∅, · ⟩} = (comp‘𝐶)
8811setc1ocofval 49476 . . . . . 6 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘𝐸)
89 velsn 4601 . . . . . . . . . . 11 (𝑎 ∈ {∅} ↔ 𝑎 = ∅)
90 velsn 4601 . . . . . . . . . . 11 (𝑏 ∈ {∅} ↔ 𝑏 = ∅)
91 velsn 4601 . . . . . . . . . . 11 (𝑐 ∈ {∅} ↔ 𝑐 = ∅)
9289, 90, 913anbi123i 1155 . . . . . . . . . 10 ((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ↔ (𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅))
9392anbi1i 624 . . . . . . . . 9 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))))
94 simp1 1136 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑎 = ∅)
95 simp2 1137 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑏 = ∅)
9694, 95oveq12d 7387 . . . . . . . . . . . . . 14 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = (∅𝐽∅))
9796, 24eqtrdi 2780 . . . . . . . . . . . . 13 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = {∅})
9897eleq2d 2814 . . . . . . . . . . . 12 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 ∈ {∅}))
99 velsn 4601 . . . . . . . . . . . 12 (𝑚 ∈ {∅} ↔ 𝑚 = ∅)
10098, 99bitrdi 287 . . . . . . . . . . 11 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 = ∅))
101 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑐 = ∅)
10295, 101oveq12d 7387 . . . . . . . . . . . . . 14 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = (∅𝐽∅))
103102, 24eqtrdi 2780 . . . . . . . . . . . . 13 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = {∅})
104103eleq2d 2814 . . . . . . . . . . . 12 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 ∈ {∅}))
105 velsn 4601 . . . . . . . . . . . 12 (𝑛 ∈ {∅} ↔ 𝑛 = ∅)
106104, 105bitrdi 287 . . . . . . . . . . 11 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 = ∅))
107100, 106anbi12d 632 . . . . . . . . . 10 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → ((𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐)) ↔ (𝑚 = ∅ ∧ 𝑛 = ∅)))
108107pm5.32i 574 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)))
10993, 108bitri 275 . . . . . . . 8 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)))
11030prid1 4722 . . . . . . . . . . . 12 ∅ ∈ {∅, 1o}
111110, 4eleqtrri 2827 . . . . . . . . . . 11 ∅ ∈ 2o
112 ineq12 4174 . . . . . . . . . . . . 13 ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓𝑔) = (∅ ∩ ∅))
113 0in 4356 . . . . . . . . . . . . 13 (∅ ∩ ∅) = ∅
114112, 113eqtrdi 2780 . . . . . . . . . . . 12 ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓𝑔) = ∅)
115114, 5, 30ovmpoa 7524 . . . . . . . . . . 11 ((∅ ∈ 2o ∧ ∅ ∈ 2o) → (∅ · ∅) = ∅)
116111, 111, 115mp2an 692 . . . . . . . . . 10 (∅ · ∅) = ∅
11730ovsn2 48842 . . . . . . . . . 10 (∅{⟨∅, ∅, ∅⟩}∅) = ∅
118116, 117eqtr4i 2755 . . . . . . . . 9 (∅ · ∅) = (∅{⟨∅, ∅, ∅⟩}∅)
119 simpl1 1192 . . . . . . . . . . . . 13 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑎 = ∅)
120 simpl2 1193 . . . . . . . . . . . . 13 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑏 = ∅)
121119, 120opeq12d 4841 . . . . . . . . . . . 12 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → ⟨𝑎, 𝑏⟩ = ⟨∅, ∅⟩)
122 simpl3 1194 . . . . . . . . . . . 12 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑐 = ∅)
123121, 122oveq12d 7387 . . . . . . . . . . 11 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}∅))
12435, 35mpoex 8037 . . . . . . . . . . . . 13 (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔)) ∈ V
1255, 124eqeltri 2824 . . . . . . . . . . . 12 · ∈ V
126125ovsn2 48842 . . . . . . . . . . 11 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}∅) = ·
127123, 126eqtrdi 2780 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐) = · )
128 simprr 772 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑛 = ∅)
129 simprl 770 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑚 = ∅)
130127, 128, 129oveq123d 7390 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (∅ · ∅))
131121, 122oveq12d 7387 . . . . . . . . . . 11 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅))
132 snex 5386 . . . . . . . . . . . 12 {⟨∅, ∅, ∅⟩} ∈ V
133132ovsn2 48842 . . . . . . . . . . 11 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅) = {⟨∅, ∅, ∅⟩}
134131, 133eqtrdi 2780 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐) = {⟨∅, ∅, ∅⟩})
135134, 128, 129oveq123d 7390 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚) = (∅{⟨∅, ∅, ∅⟩}∅))
136118, 130, 1353eqtr4a 2790 . . . . . . . 8 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
137109, 136sylbi 217 . . . . . . 7 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
138137adantll 714 . . . . . 6 (((⊤ ∧ (𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅})) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
13984a1i 11 . . . . . 6 (⊤ → 𝐸 ∈ Cat)
14015a1i 11 . . . . . 6 (⊤ → {∅} ⊆ {∅})
14185, 27, 50, 9, 87, 88, 138, 139, 140resccat 49056 . . . . 5 (⊤ → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat))
142141mptru 1547 . . . 4 (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)
14384, 142mpbir 231 . . 3 𝐷 ∈ Cat
14458, 79, 1433pm3.2i 1340 . 2 (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)
1458, 14, 1443pm3.2i 1340 1 (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911  c0 4292  {csn 4585  {cpr 4587  {ctp 4589  cop 4591  cotp 4593   class class class wbr 5102  cmpt 5183   × cxp 5629   Fn wfn 6494  cfv 6499  (class class class)co 7369  cmpo 7371  1oc1o 8404  2oc2o 8405  ndxcnx 17139  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17605  Idccid 17606  Homf chomf 17607  cat cssc 17749  cat cresc 17750  SetCatcsetc 18017  TermCatctermc 49454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-hom 17220  df-cco 17221  df-cat 17609  df-cid 17610  df-homf 17611  df-comf 17612  df-ssc 17752  df-resc 17753  df-setc 18018  df-thinc 49400  df-termc 49455
This theorem is referenced by:  cnelsubc  49586
  Copyright terms: Public domain W3C validator