Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setc1onsubc Structured version   Visualization version   GIF version

Theorem setc1onsubc 49597
Description: Construct a category with one object and two morphisms and prove that category (SetCat‘1o) satisfies all conditions for a subcategory but the compatibility of identity morphisms, showing the necessity of the latter condition in defining a subcategory. Exercise 4A of [Adamek] p. 58. (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
setc1onsubc.c 𝐶 = {⟨(Base‘ndx), {∅}⟩, ⟨(Hom ‘ndx), {⟨∅, ∅, 2o⟩}⟩, ⟨(comp‘ndx), {⟨⟨∅, ∅⟩, ∅, · ⟩}⟩}
setc1onsubc.x · = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔))
setc1onsubc.e 𝐸 = (SetCat‘1o)
setc1onsubc.j 𝐽 = (Homf𝐸)
setc1onsubc.s 𝑆 = 1o
setc1onsubc.h 𝐻 = (Homf𝐶)
setc1onsubc.i 1 = (Id‘𝐶)
setc1onsubc.d 𝐷 = (𝐶cat 𝐽)
Assertion
Ref Expression
setc1onsubc (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐶(𝑥,𝑓,𝑔)   𝐷(𝑥,𝑓,𝑔)   𝑆(𝑥,𝑓,𝑔)   · (𝑥,𝑓,𝑔)   1 (𝑥,𝑓,𝑔)   𝐸(𝑥,𝑓,𝑔)   𝐻(𝑥,𝑓,𝑔)   𝐽(𝑥,𝑓,𝑔)

Proof of Theorem setc1onsubc
Dummy variables 𝑦 𝑎 𝑏 𝑐 𝑚 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4351 . . . 4 ∅ ⊆ 1o
2 1oex 8398 . . . 4 1o ∈ V
3 setc1onsubc.c . . . . 5 𝐶 = {⟨(Base‘ndx), {∅}⟩, ⟨(Hom ‘ndx), {⟨∅, ∅, 2o⟩}⟩, ⟨(comp‘ndx), {⟨⟨∅, ∅⟩, ∅, · ⟩}⟩}
4 df2o3 8396 . . . . 5 2o = {∅, 1o}
5 setc1onsubc.x . . . . 5 · = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔))
63, 4, 5incat 49596 . . . 4 ((∅ ⊆ 1o ∧ 1o ∈ V) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o)))
71, 2, 6mp2an 692 . . 3 (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o))
87simpli 483 . 2 𝐶 ∈ Cat
9 setc1onsubc.j . . 3 𝐽 = (Homf𝐸)
10 setc1onsubc.s . . . 4 𝑆 = 1o
11 setc1onsubc.e . . . . 5 𝐸 = (SetCat‘1o)
1211setc1obas 49487 . . . 4 1o = (Base‘𝐸)
1310, 12eqtri 2752 . . 3 𝑆 = (Base‘𝐸)
149, 13homffn 17599 . 2 𝐽 Fn (𝑆 × 𝑆)
15 ssid 3958 . . . 4 {∅} ⊆ {∅}
16 snsspr1 4765 . . . . . 6 {∅} ⊆ {∅, 1o}
1711setc1ohomfval 49488 . . . . . . . . 9 {⟨∅, ∅, 1o⟩} = (Hom ‘𝐸)
18 0lt1o 8422 . . . . . . . . . 10 ∅ ∈ 1o
1918a1i 11 . . . . . . . . 9 (⊤ → ∅ ∈ 1o)
209, 12, 17, 19, 19homfval 17598 . . . . . . . 8 (⊤ → (∅𝐽∅) = (∅{⟨∅, ∅, 1o⟩}∅))
2120mptru 1547 . . . . . . 7 (∅𝐽∅) = (∅{⟨∅, ∅, 1o⟩}∅)
222ovsn2 48855 . . . . . . 7 (∅{⟨∅, ∅, 1o⟩}∅) = 1o
23 df1o2 8395 . . . . . . 7 1o = {∅}
2421, 22, 233eqtri 2756 . . . . . 6 (∅𝐽∅) = {∅}
25 setc1onsubc.h . . . . . . . . 9 𝐻 = (Homf𝐶)
26 snex 5375 . . . . . . . . . 10 {∅} ∈ V
273, 26catbas 49221 . . . . . . . . 9 {∅} = (Base‘𝐶)
28 snex 5375 . . . . . . . . . 10 {⟨∅, ∅, 2o⟩} ∈ V
293, 28cathomfval 49222 . . . . . . . . 9 {⟨∅, ∅, 2o⟩} = (Hom ‘𝐶)
30 0ex 5246 . . . . . . . . . . 11 ∅ ∈ V
3130snid 4614 . . . . . . . . . 10 ∅ ∈ {∅}
3231a1i 11 . . . . . . . . 9 (⊤ → ∅ ∈ {∅})
3325, 27, 29, 32, 32homfval 17598 . . . . . . . 8 (⊤ → (∅𝐻∅) = (∅{⟨∅, ∅, 2o⟩}∅))
3433mptru 1547 . . . . . . 7 (∅𝐻∅) = (∅{⟨∅, ∅, 2o⟩}∅)
35 2oex 8399 . . . . . . . 8 2o ∈ V
3635ovsn2 48855 . . . . . . 7 (∅{⟨∅, ∅, 2o⟩}∅) = 2o
3734, 36, 43eqtri 2756 . . . . . 6 (∅𝐻∅) = {∅, 1o}
3816, 24, 373sstr4i 3987 . . . . 5 (∅𝐽∅) ⊆ (∅𝐻∅)
39 oveq1 7356 . . . . . . . . 9 (𝑝 = ∅ → (𝑝𝐽𝑞) = (∅𝐽𝑞))
40 oveq1 7356 . . . . . . . . 9 (𝑝 = ∅ → (𝑝𝐻𝑞) = (∅𝐻𝑞))
4139, 40sseq12d 3969 . . . . . . . 8 (𝑝 = ∅ → ((𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽𝑞) ⊆ (∅𝐻𝑞)))
4241ralbidv 3152 . . . . . . 7 (𝑝 = ∅ → (∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞)))
4330, 42ralsn 4633 . . . . . 6 (∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ ∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞))
44 oveq2 7357 . . . . . . . 8 (𝑞 = ∅ → (∅𝐽𝑞) = (∅𝐽∅))
45 oveq2 7357 . . . . . . . 8 (𝑞 = ∅ → (∅𝐻𝑞) = (∅𝐻∅))
4644, 45sseq12d 3969 . . . . . . 7 (𝑞 = ∅ → ((∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅)))
4730, 46ralsn 4633 . . . . . 6 (∀𝑞 ∈ {∅} (∅𝐽𝑞) ⊆ (∅𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅))
4843, 47bitri 275 . . . . 5 (∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞) ↔ (∅𝐽∅) ⊆ (∅𝐻∅))
4938, 48mpbir 231 . . . 4 𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)
5023, 12eqtr3i 2754 . . . . . . . 8 {∅} = (Base‘𝐸)
519, 50homffn 17599 . . . . . . 7 𝐽 Fn ({∅} × {∅})
5251a1i 11 . . . . . 6 (⊤ → 𝐽 Fn ({∅} × {∅}))
5325, 27homffn 17599 . . . . . . 7 𝐻 Fn ({∅} × {∅})
5453a1i 11 . . . . . 6 (⊤ → 𝐻 Fn ({∅} × {∅}))
5526a1i 11 . . . . . 6 (⊤ → {∅} ∈ V)
5652, 54, 55isssc 17727 . . . . 5 (⊤ → (𝐽cat 𝐻 ↔ ({∅} ⊆ {∅} ∧ ∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞))))
5756mptru 1547 . . . 4 (𝐽cat 𝐻 ↔ ({∅} ⊆ {∅} ∧ ∀𝑝 ∈ {∅}∀𝑞 ∈ {∅} (𝑝𝐽𝑞) ⊆ (𝑝𝐻𝑞)))
5815, 49, 57mpbir2an 711 . . 3 𝐽cat 𝐻
59 elirr 9491 . . . 4 ¬ {∅} ∈ {∅}
6010, 23eqtri 2752 . . . . . 6 𝑆 = {∅}
61 biid 261 . . . . . 6 (¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥))
6260, 61rexeqbii 3308 . . . . 5 (∃𝑥𝑆 ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ∃𝑥 ∈ {∅} ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥))
63 rexnal 3081 . . . . 5 (∃𝑥𝑆 ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
64 fveq2 6822 . . . . . . . . 9 (𝑥 = ∅ → ( 1𝑥) = ( 1 ‘∅))
6523a1i 11 . . . . . . . . . . 11 (𝑦 = ∅ → 1o = {∅})
66 setc1onsubc.i . . . . . . . . . . . 12 1 = (Id‘𝐶)
677simpri 485 . . . . . . . . . . . 12 (Id‘𝐶) = (𝑦 ∈ {∅} ↦ 1o)
6866, 67eqtri 2752 . . . . . . . . . . 11 1 = (𝑦 ∈ {∅} ↦ 1o)
6965, 68, 26fvmpt 6930 . . . . . . . . . 10 (∅ ∈ {∅} → ( 1 ‘∅) = {∅})
7031, 69ax-mp 5 . . . . . . . . 9 ( 1 ‘∅) = {∅}
7164, 70eqtrdi 2780 . . . . . . . 8 (𝑥 = ∅ → ( 1𝑥) = {∅})
72 oveq12 7358 . . . . . . . . . 10 ((𝑥 = ∅ ∧ 𝑥 = ∅) → (𝑥𝐽𝑥) = (∅𝐽∅))
7372anidms 566 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝐽𝑥) = (∅𝐽∅))
7473, 24eqtrdi 2780 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝐽𝑥) = {∅})
7571, 74eleq12d 2822 . . . . . . 7 (𝑥 = ∅ → (( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ {∅} ∈ {∅}))
7675notbid 318 . . . . . 6 (𝑥 = ∅ → (¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈ {∅}))
7730, 76rexsn 4634 . . . . 5 (∃𝑥 ∈ {∅} ¬ ( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ {∅} ∈ {∅})
7862, 63, 773bitr3ri 302 . . . 4 (¬ {∅} ∈ {∅} ↔ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
7959, 78mpbi 230 . . 3 ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥)
80 setc1oterm 49486 . . . . . . . 8 (SetCat‘1o) ∈ TermCat
8180a1i 11 . . . . . . 7 (⊤ → (SetCat‘1o) ∈ TermCat)
8281termccd 49474 . . . . . 6 (⊤ → (SetCat‘1o) ∈ Cat)
8382mptru 1547 . . . . 5 (SetCat‘1o) ∈ Cat
8411, 83eqeltri 2824 . . . 4 𝐸 ∈ Cat
85 setc1onsubc.d . . . . . 6 𝐷 = (𝐶cat 𝐽)
86 snex 5375 . . . . . . 7 {⟨⟨∅, ∅⟩, ∅, · ⟩} ∈ V
873, 86catcofval 49223 . . . . . 6 {⟨⟨∅, ∅⟩, ∅, · ⟩} = (comp‘𝐶)
8811setc1ocofval 49489 . . . . . 6 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘𝐸)
89 velsn 4593 . . . . . . . . . . 11 (𝑎 ∈ {∅} ↔ 𝑎 = ∅)
90 velsn 4593 . . . . . . . . . . 11 (𝑏 ∈ {∅} ↔ 𝑏 = ∅)
91 velsn 4593 . . . . . . . . . . 11 (𝑐 ∈ {∅} ↔ 𝑐 = ∅)
9289, 90, 913anbi123i 1155 . . . . . . . . . 10 ((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ↔ (𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅))
9392anbi1i 624 . . . . . . . . 9 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))))
94 simp1 1136 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑎 = ∅)
95 simp2 1137 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑏 = ∅)
9694, 95oveq12d 7367 . . . . . . . . . . . . . 14 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = (∅𝐽∅))
9796, 24eqtrdi 2780 . . . . . . . . . . . . 13 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑎𝐽𝑏) = {∅})
9897eleq2d 2814 . . . . . . . . . . . 12 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 ∈ {∅}))
99 velsn 4593 . . . . . . . . . . . 12 (𝑚 ∈ {∅} ↔ 𝑚 = ∅)
10098, 99bitrdi 287 . . . . . . . . . . 11 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑚 ∈ (𝑎𝐽𝑏) ↔ 𝑚 = ∅))
101 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → 𝑐 = ∅)
10295, 101oveq12d 7367 . . . . . . . . . . . . . 14 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = (∅𝐽∅))
103102, 24eqtrdi 2780 . . . . . . . . . . . . 13 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑏𝐽𝑐) = {∅})
104103eleq2d 2814 . . . . . . . . . . . 12 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 ∈ {∅}))
105 velsn 4593 . . . . . . . . . . . 12 (𝑛 ∈ {∅} ↔ 𝑛 = ∅)
106104, 105bitrdi 287 . . . . . . . . . . 11 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → (𝑛 ∈ (𝑏𝐽𝑐) ↔ 𝑛 = ∅))
107100, 106anbi12d 632 . . . . . . . . . 10 ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) → ((𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐)) ↔ (𝑚 = ∅ ∧ 𝑛 = ∅)))
108107pm5.32i 574 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)))
10993, 108bitri 275 . . . . . . . 8 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) ↔ ((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)))
11030prid1 4714 . . . . . . . . . . . 12 ∅ ∈ {∅, 1o}
111110, 4eleqtrri 2827 . . . . . . . . . . 11 ∅ ∈ 2o
112 ineq12 4166 . . . . . . . . . . . . 13 ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓𝑔) = (∅ ∩ ∅))
113 0in 4348 . . . . . . . . . . . . 13 (∅ ∩ ∅) = ∅
114112, 113eqtrdi 2780 . . . . . . . . . . . 12 ((𝑓 = ∅ ∧ 𝑔 = ∅) → (𝑓𝑔) = ∅)
115114, 5, 30ovmpoa 7504 . . . . . . . . . . 11 ((∅ ∈ 2o ∧ ∅ ∈ 2o) → (∅ · ∅) = ∅)
116111, 111, 115mp2an 692 . . . . . . . . . 10 (∅ · ∅) = ∅
11730ovsn2 48855 . . . . . . . . . 10 (∅{⟨∅, ∅, ∅⟩}∅) = ∅
118116, 117eqtr4i 2755 . . . . . . . . 9 (∅ · ∅) = (∅{⟨∅, ∅, ∅⟩}∅)
119 simpl1 1192 . . . . . . . . . . . . 13 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑎 = ∅)
120 simpl2 1193 . . . . . . . . . . . . 13 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑏 = ∅)
121119, 120opeq12d 4832 . . . . . . . . . . . 12 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → ⟨𝑎, 𝑏⟩ = ⟨∅, ∅⟩)
122 simpl3 1194 . . . . . . . . . . . 12 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑐 = ∅)
123121, 122oveq12d 7367 . . . . . . . . . . 11 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}∅))
12435, 35mpoex 8014 . . . . . . . . . . . . 13 (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓𝑔)) ∈ V
1255, 124eqeltri 2824 . . . . . . . . . . . 12 · ∈ V
126125ovsn2 48855 . . . . . . . . . . 11 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}∅) = ·
127123, 126eqtrdi 2780 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐) = · )
128 simprr 772 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑛 = ∅)
129 simprl 770 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → 𝑚 = ∅)
130127, 128, 129oveq123d 7370 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (∅ · ∅))
131121, 122oveq12d 7367 . . . . . . . . . . 11 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅))
132 snex 5375 . . . . . . . . . . . 12 {⟨∅, ∅, ∅⟩} ∈ V
133132ovsn2 48855 . . . . . . . . . . 11 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅) = {⟨∅, ∅, ∅⟩}
134131, 133eqtrdi 2780 . . . . . . . . . 10 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐) = {⟨∅, ∅, ∅⟩})
135134, 128, 129oveq123d 7370 . . . . . . . . 9 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚) = (∅{⟨∅, ∅, ∅⟩}∅))
136118, 130, 1353eqtr4a 2790 . . . . . . . 8 (((𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅) ∧ (𝑚 = ∅ ∧ 𝑛 = ∅)) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
137109, 136sylbi 217 . . . . . . 7 (((𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅}) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
138137adantll 714 . . . . . 6 (((⊤ ∧ (𝑎 ∈ {∅} ∧ 𝑏 ∈ {∅} ∧ 𝑐 ∈ {∅})) ∧ (𝑚 ∈ (𝑎𝐽𝑏) ∧ 𝑛 ∈ (𝑏𝐽𝑐))) → (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, · ⟩}𝑐)𝑚) = (𝑛(⟨𝑎, 𝑏⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}𝑐)𝑚))
13984a1i 11 . . . . . 6 (⊤ → 𝐸 ∈ Cat)
14015a1i 11 . . . . . 6 (⊤ → {∅} ⊆ {∅})
14185, 27, 50, 9, 87, 88, 138, 139, 140resccat 49069 . . . . 5 (⊤ → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat))
142141mptru 1547 . . . 4 (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)
14384, 142mpbir 231 . . 3 𝐷 ∈ Cat
14458, 79, 1433pm3.2i 1340 . 2 (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)
1458, 14, 1443pm3.2i 1340 1 (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat 𝐻 ∧ ¬ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cin 3902  wss 3903  c0 4284  {csn 4577  {cpr 4579  {ctp 4581  cop 4583  cotp 4585   class class class wbr 5092  cmpt 5173   × cxp 5617   Fn wfn 6477  cfv 6482  (class class class)co 7349  cmpo 7351  1oc1o 8381  2oc2o 8382  ndxcnx 17104  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  Homf chomf 17572  cat cssc 17714  cat cresc 17715  SetCatcsetc 17982  TermCatctermc 49467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-homf 17576  df-comf 17577  df-ssc 17717  df-resc 17718  df-setc 17983  df-thinc 49413  df-termc 49468
This theorem is referenced by:  cnelsubc  49599
  Copyright terms: Public domain W3C validator