| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcsetc1o | Structured version Visualization version GIF version | ||
| Description: Value of the functor to the trivial category. The converse is also true because 𝐹 would be the empty set if 𝐶 were not a category; and the empty set cannot equal an ordered pair of two sets. (Contributed by Zhi Wang, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| funcsetc1o.1 | ⊢ 1 = (SetCat‘1o) |
| funcsetc1o.f | ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) |
| funcsetc1o.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| funcsetc1o.b | ⊢ 𝐵 = (Base‘𝐶) |
| funcsetc1o.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| funcsetc1o | ⊢ (𝜑 → 𝐹 = 〈(𝐵 × 1o), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × 1o))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ( 1 Δfunc𝐶) = ( 1 Δfunc𝐶) | |
| 2 | funcsetc1o.1 | . . . . . 6 ⊢ 1 = (SetCat‘1o) | |
| 3 | setc1oterm 49453 | . . . . . 6 ⊢ (SetCat‘1o) ∈ TermCat | |
| 4 | 2, 3 | eqeltri 2824 | . . . . 5 ⊢ 1 ∈ TermCat |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ TermCat) |
| 6 | 5 | termccd 49441 | . . 3 ⊢ (𝜑 → 1 ∈ Cat) |
| 7 | funcsetc1o.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 8 | 2 | setc1obas 49454 | . . 3 ⊢ 1o = (Base‘ 1 ) |
| 9 | 0lt1o 8445 | . . . 4 ⊢ ∅ ∈ 1o | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ 1o) |
| 11 | funcsetc1o.f | . . 3 ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) | |
| 12 | funcsetc1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 13 | funcsetc1o.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 14 | eqid 2729 | . . 3 ⊢ (Id‘ 1 ) = (Id‘ 1 ) | |
| 15 | 1, 6, 7, 8, 10, 11, 12, 13, 14 | diag1a 49267 | . 2 ⊢ (𝜑 → 𝐹 = 〈(𝐵 × {∅}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × {((Id‘ 1 )‘∅)}))〉) |
| 16 | df1o2 8418 | . . . 4 ⊢ 1o = {∅} | |
| 17 | 16 | xpeq2i 5658 | . . 3 ⊢ (𝐵 × 1o) = (𝐵 × {∅}) |
| 18 | 2, 14 | setc1oid 49457 | . . . . . . . 8 ⊢ ((Id‘ 1 )‘∅) = ∅ |
| 19 | 18 | sneqi 4596 | . . . . . . 7 ⊢ {((Id‘ 1 )‘∅)} = {∅} |
| 20 | 16, 19 | eqtr4i 2755 | . . . . . 6 ⊢ 1o = {((Id‘ 1 )‘∅)} |
| 21 | 20 | xpeq2i 5658 | . . . . 5 ⊢ ((𝑥𝐻𝑦) × 1o) = ((𝑥𝐻𝑦) × {((Id‘ 1 )‘∅)}) |
| 22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥𝐻𝑦) × 1o) = ((𝑥𝐻𝑦) × {((Id‘ 1 )‘∅)})) |
| 23 | 22 | mpoeq3ia 7447 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × 1o)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × {((Id‘ 1 )‘∅)})) |
| 24 | 17, 23 | opeq12i 4838 | . 2 ⊢ 〈(𝐵 × 1o), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × 1o))〉 = 〈(𝐵 × {∅}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × {((Id‘ 1 )‘∅)}))〉 |
| 25 | 15, 24 | eqtr4di 2782 | 1 ⊢ (𝜑 → 𝐹 = 〈(𝐵 × 1o), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × 1o))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4292 {csn 4585 〈cop 4591 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 1oc1o 8404 Basecbs 17155 Hom chom 17207 Catccat 17601 Idccid 17602 SetCatcsetc 18013 Δfunccdiag 18149 TermCatctermc 49434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17605 df-cid 17606 df-func 17796 df-nat 17884 df-fuc 17885 df-setc 18014 df-xpc 18109 df-1stf 18110 df-curf 18151 df-diag 18153 df-thinc 49380 df-termc 49435 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |