| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcsetc1o | Structured version Visualization version GIF version | ||
| Description: Value of the functor to the trivial category. The converse is also true because 𝐹 would be the empty set if 𝐶 were not a category; and the empty set cannot equal an ordered pair of two sets. (Contributed by Zhi Wang, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| funcsetc1o.1 | ⊢ 1 = (SetCat‘1o) |
| funcsetc1o.f | ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) |
| funcsetc1o.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| funcsetc1o.b | ⊢ 𝐵 = (Base‘𝐶) |
| funcsetc1o.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| funcsetc1o | ⊢ (𝜑 → 𝐹 = 〈(𝐵 × 1o), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × 1o))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ( 1 Δfunc𝐶) = ( 1 Δfunc𝐶) | |
| 2 | funcsetc1o.1 | . . . . . 6 ⊢ 1 = (SetCat‘1o) | |
| 3 | setc1oterm 49460 | . . . . . 6 ⊢ (SetCat‘1o) ∈ TermCat | |
| 4 | 2, 3 | eqeltri 2825 | . . . . 5 ⊢ 1 ∈ TermCat |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ TermCat) |
| 6 | 5 | termccd 49448 | . . 3 ⊢ (𝜑 → 1 ∈ Cat) |
| 7 | funcsetc1o.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 8 | 2 | setc1obas 49461 | . . 3 ⊢ 1o = (Base‘ 1 ) |
| 9 | 0lt1o 8470 | . . . 4 ⊢ ∅ ∈ 1o | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ 1o) |
| 11 | funcsetc1o.f | . . 3 ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) | |
| 12 | funcsetc1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 13 | funcsetc1o.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 14 | eqid 2730 | . . 3 ⊢ (Id‘ 1 ) = (Id‘ 1 ) | |
| 15 | 1, 6, 7, 8, 10, 11, 12, 13, 14 | diag1a 49276 | . 2 ⊢ (𝜑 → 𝐹 = 〈(𝐵 × {∅}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × {((Id‘ 1 )‘∅)}))〉) |
| 16 | df1o2 8443 | . . . 4 ⊢ 1o = {∅} | |
| 17 | 16 | xpeq2i 5667 | . . 3 ⊢ (𝐵 × 1o) = (𝐵 × {∅}) |
| 18 | 2, 14 | setc1oid 49464 | . . . . . . . 8 ⊢ ((Id‘ 1 )‘∅) = ∅ |
| 19 | 18 | sneqi 4602 | . . . . . . 7 ⊢ {((Id‘ 1 )‘∅)} = {∅} |
| 20 | 16, 19 | eqtr4i 2756 | . . . . . 6 ⊢ 1o = {((Id‘ 1 )‘∅)} |
| 21 | 20 | xpeq2i 5667 | . . . . 5 ⊢ ((𝑥𝐻𝑦) × 1o) = ((𝑥𝐻𝑦) × {((Id‘ 1 )‘∅)}) |
| 22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥𝐻𝑦) × 1o) = ((𝑥𝐻𝑦) × {((Id‘ 1 )‘∅)})) |
| 23 | 22 | mpoeq3ia 7469 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × 1o)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × {((Id‘ 1 )‘∅)})) |
| 24 | 17, 23 | opeq12i 4844 | . 2 ⊢ 〈(𝐵 × 1o), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × 1o))〉 = 〈(𝐵 × {∅}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × {((Id‘ 1 )‘∅)}))〉 |
| 25 | 15, 24 | eqtr4di 2783 | 1 ⊢ (𝜑 → 𝐹 = 〈(𝐵 × 1o), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × 1o))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4298 {csn 4591 〈cop 4597 × cxp 5638 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 1st c1st 7968 1oc1o 8429 Basecbs 17185 Hom chom 17237 Catccat 17631 Idccid 17632 SetCatcsetc 18043 Δfunccdiag 18179 TermCatctermc 49441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-func 17826 df-nat 17914 df-fuc 17915 df-setc 18044 df-xpc 18139 df-1stf 18140 df-curf 18181 df-diag 18183 df-thinc 49387 df-termc 49442 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |