MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnunirn Structured version   Visualization version   GIF version

Theorem tglnunirn 28527
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglng.p 𝑃 = (Base‘𝐺)
tglng.l 𝐿 = (LineG‘𝐺)
tglng.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
tglnunirn (𝐺 ∈ TarskiG → ran 𝐿𝑃)

Proof of Theorem tglnunirn
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglng.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglng.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
3 tglng.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
41, 2, 3tglng 28525 . . . . . . 7 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
54rneqd 5918 . . . . . 6 (𝐺 ∈ TarskiG → ran 𝐿 = ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
65eleq2d 2820 . . . . 5 (𝐺 ∈ TarskiG → (𝑝 ∈ ran 𝐿𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})))
76biimpa 476 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿) → 𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
8 eqid 2735 . . . . . 6 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
91fvexi 6890 . . . . . . 7 𝑃 ∈ V
109rabex 5309 . . . . . 6 {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V
118, 10elrnmpo 7543 . . . . 5 (𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
12 ssrab2 4055 . . . . . . . 8 {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ⊆ 𝑃
13 sseq1 3984 . . . . . . . 8 (𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → (𝑝𝑃 ↔ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ⊆ 𝑃))
1412, 13mpbiri 258 . . . . . . 7 (𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝𝑃)
1514rexlimivw 3137 . . . . . 6 (∃𝑦 ∈ (𝑃 ∖ {𝑥})𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝𝑃)
1615rexlimivw 3137 . . . . 5 (∃𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝𝑃)
1711, 16sylbi 217 . . . 4 (𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝑝𝑃)
187, 17syl 17 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿) → 𝑝𝑃)
1918ralrimiva 3132 . 2 (𝐺 ∈ TarskiG → ∀𝑝 ∈ ran 𝐿 𝑝𝑃)
20 unissb 4915 . 2 ( ran 𝐿𝑃 ↔ ∀𝑝 ∈ ran 𝐿 𝑝𝑃)
2119, 20sylibr 234 1 (𝐺 ∈ TarskiG → ran 𝐿𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  cdif 3923  wss 3926  {csn 4601   cuni 4883  ran crn 5655  cfv 6531  (class class class)co 7405  cmpo 7407  Basecbs 17228  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-cnv 5662  df-dm 5664  df-rn 5665  df-iota 6484  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-trkg 28432
This theorem is referenced by:  tglnpt  28528  tglineintmo  28621
  Copyright terms: Public domain W3C validator