MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnunirn Structured version   Visualization version   GIF version

Theorem tglnunirn 26351
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglng.p 𝑃 = (Base‘𝐺)
tglng.l 𝐿 = (LineG‘𝐺)
tglng.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
tglnunirn (𝐺 ∈ TarskiG → ran 𝐿𝑃)

Proof of Theorem tglnunirn
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglng.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglng.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
3 tglng.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
41, 2, 3tglng 26349 . . . . . . 7 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
54rneqd 5796 . . . . . 6 (𝐺 ∈ TarskiG → ran 𝐿 = ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
65eleq2d 2901 . . . . 5 (𝐺 ∈ TarskiG → (𝑝 ∈ ran 𝐿𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})))
76biimpa 480 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿) → 𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
8 eqid 2824 . . . . . 6 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
91fvexi 6677 . . . . . . 7 𝑃 ∈ V
109rabex 5222 . . . . . 6 {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V
118, 10elrnmpo 7282 . . . . 5 (𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
12 ssrab2 4042 . . . . . . . 8 {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ⊆ 𝑃
13 sseq1 3978 . . . . . . . 8 (𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → (𝑝𝑃 ↔ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ⊆ 𝑃))
1412, 13mpbiri 261 . . . . . . 7 (𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝𝑃)
1514rexlimivw 3274 . . . . . 6 (∃𝑦 ∈ (𝑃 ∖ {𝑥})𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝𝑃)
1615rexlimivw 3274 . . . . 5 (∃𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝𝑃)
1711, 16sylbi 220 . . . 4 (𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝑝𝑃)
187, 17syl 17 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿) → 𝑝𝑃)
1918ralrimiva 3177 . 2 (𝐺 ∈ TarskiG → ∀𝑝 ∈ ran 𝐿 𝑝𝑃)
20 unissb 4856 . 2 ( ran 𝐿𝑃 ↔ ∀𝑝 ∈ ran 𝐿 𝑝𝑃)
2119, 20sylibr 237 1 (𝐺 ∈ TarskiG → ran 𝐿𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3o 1083   = wceq 1538  wcel 2115  wral 3133  wrex 3134  {crab 3137  cdif 3916  wss 3919  {csn 4550   cuni 4824  ran crn 5544  cfv 6345  (class class class)co 7151  cmpo 7153  Basecbs 16485  TarskiGcstrkg 26233  Itvcitv 26239  LineGclng 26240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5054  df-opab 5116  df-cnv 5551  df-dm 5553  df-rn 5554  df-iota 6304  df-fv 6353  df-ov 7154  df-oprab 7155  df-mpo 7156  df-trkg 26256
This theorem is referenced by:  tglnpt  26352  tglineintmo  26445
  Copyright terms: Public domain W3C validator