MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnunirn Structured version   Visualization version   GIF version

Theorem tglnunirn 28528
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglng.p 𝑃 = (Base‘𝐺)
tglng.l 𝐿 = (LineG‘𝐺)
tglng.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
tglnunirn (𝐺 ∈ TarskiG → ran 𝐿𝑃)

Proof of Theorem tglnunirn
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglng.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglng.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
3 tglng.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
41, 2, 3tglng 28526 . . . . . . 7 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
54rneqd 5891 . . . . . 6 (𝐺 ∈ TarskiG → ran 𝐿 = ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
65eleq2d 2814 . . . . 5 (𝐺 ∈ TarskiG → (𝑝 ∈ ran 𝐿𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})))
76biimpa 476 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿) → 𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
8 eqid 2729 . . . . . 6 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
91fvexi 6854 . . . . . . 7 𝑃 ∈ V
109rabex 5289 . . . . . 6 {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V
118, 10elrnmpo 7505 . . . . 5 (𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
12 ssrab2 4039 . . . . . . . 8 {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ⊆ 𝑃
13 sseq1 3969 . . . . . . . 8 (𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → (𝑝𝑃 ↔ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ⊆ 𝑃))
1412, 13mpbiri 258 . . . . . . 7 (𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝𝑃)
1514rexlimivw 3130 . . . . . 6 (∃𝑦 ∈ (𝑃 ∖ {𝑥})𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝𝑃)
1615rexlimivw 3130 . . . . 5 (∃𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})𝑝 = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝𝑃)
1711, 16sylbi 217 . . . 4 (𝑝 ∈ ran (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝑝𝑃)
187, 17syl 17 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿) → 𝑝𝑃)
1918ralrimiva 3125 . 2 (𝐺 ∈ TarskiG → ∀𝑝 ∈ ran 𝐿 𝑝𝑃)
20 unissb 4899 . 2 ( ran 𝐿𝑃 ↔ ∀𝑝 ∈ ran 𝐿 𝑝𝑃)
2119, 20sylibr 234 1 (𝐺 ∈ TarskiG → ran 𝐿𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3402  cdif 3908  wss 3911  {csn 4585   cuni 4867  ran crn 5632  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  TarskiGcstrkg 28407  Itvcitv 28413  LineGclng 28414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-cnv 5639  df-dm 5641  df-rn 5642  df-iota 6452  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-trkg 28433
This theorem is referenced by:  tglnpt  28529  tglineintmo  28622
  Copyright terms: Public domain W3C validator