MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnfn Structured version   Visualization version   GIF version

Theorem tglnfn 26341
Description: Lines as functions. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglng.p 𝑃 = (Base‘𝐺)
tglng.l 𝐿 = (LineG‘𝐺)
tglng.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
tglnfn (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I ))

Proof of Theorem tglnfn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglng.p . . . . . . . 8 𝑃 = (Base‘𝐺)
21fvexi 6659 . . . . . . 7 𝑃 ∈ V
32rabex 5199 . . . . . 6 {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V
43rgen2w 3119 . . . . 5 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥}){𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V
5 eqid 2798 . . . . . 6 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
65fmpox 7747 . . . . 5 (∀𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥}){𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V ↔ (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}): 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))⟶V)
74, 6mpbi 233 . . . 4 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}): 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))⟶V
8 ffn 6487 . . . 4 ((𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}): 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))⟶V → (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥})))
97, 8ax-mp 5 . . 3 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))
10 xpdifid 5992 . . . 4 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥})) = ((𝑃 × 𝑃) ∖ I )
1110fneq2i 6421 . . 3 ((𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥})) ↔ (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ((𝑃 × 𝑃) ∖ I ))
129, 11mpbi 233 . 2 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ((𝑃 × 𝑃) ∖ I )
13 tglng.l . . . 4 𝐿 = (LineG‘𝐺)
14 tglng.i . . . 4 𝐼 = (Itv‘𝐺)
151, 13, 14tglng 26340 . . 3 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
1615fneq1d 6416 . 2 (𝐺 ∈ TarskiG → (𝐿 Fn ((𝑃 × 𝑃) ∖ I ) ↔ (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ((𝑃 × 𝑃) ∖ I )))
1712, 16mpbiri 261 1 (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1083   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  cdif 3878  {csn 4525   ciun 4881   I cid 5424   × cxp 5517   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  Basecbs 16475  TarskiGcstrkg 26224  Itvcitv 26230  LineGclng 26231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-trkg 26247
This theorem is referenced by:  tglngne  26344  tgelrnln  26424
  Copyright terms: Public domain W3C validator