| Step | Hyp | Ref
| Expression |
| 1 | | tglng.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
| 2 | 1 | fvexi 6920 |
. . . . . . 7
⊢ 𝑃 ∈ V |
| 3 | 2 | rabex 5339 |
. . . . . 6
⊢ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V |
| 4 | 3 | rgen2w 3066 |
. . . . 5
⊢
∀𝑥 ∈
𝑃 ∀𝑦 ∈ (𝑃 ∖ {𝑥}){𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V |
| 5 | | eqid 2737 |
. . . . . 6
⊢ (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) |
| 6 | 5 | fmpox 8092 |
. . . . 5
⊢
(∀𝑥 ∈
𝑃 ∀𝑦 ∈ (𝑃 ∖ {𝑥}){𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V ↔ (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}):∪
𝑥 ∈ 𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))⟶V) |
| 7 | 4, 6 | mpbi 230 |
. . . 4
⊢ (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}):∪
𝑥 ∈ 𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))⟶V |
| 8 | | ffn 6736 |
. . . 4
⊢ ((𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}):∪
𝑥 ∈ 𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))⟶V → (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ∪
𝑥 ∈ 𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))) |
| 9 | 7, 8 | ax-mp 5 |
. . 3
⊢ (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ∪
𝑥 ∈ 𝑃 ({𝑥} × (𝑃 ∖ {𝑥})) |
| 10 | | xpdifid 6188 |
. . . 4
⊢ ∪ 𝑥 ∈ 𝑃 ({𝑥} × (𝑃 ∖ {𝑥})) = ((𝑃 × 𝑃) ∖ I ) |
| 11 | 10 | fneq2i 6666 |
. . 3
⊢ ((𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ∪
𝑥 ∈ 𝑃 ({𝑥} × (𝑃 ∖ {𝑥})) ↔ (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ((𝑃 × 𝑃) ∖ I )) |
| 12 | 9, 11 | mpbi 230 |
. 2
⊢ (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ((𝑃 × 𝑃) ∖ I ) |
| 13 | | tglng.l |
. . . 4
⊢ 𝐿 = (LineG‘𝐺) |
| 14 | | tglng.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
| 15 | 1, 13, 14 | tglng 28554 |
. . 3
⊢ (𝐺 ∈ TarskiG → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
| 16 | 15 | fneq1d 6661 |
. 2
⊢ (𝐺 ∈ TarskiG → (𝐿 Fn ((𝑃 × 𝑃) ∖ I ) ↔ (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ((𝑃 × 𝑃) ∖ I ))) |
| 17 | 12, 16 | mpbiri 258 |
1
⊢ (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I )) |