MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineintmo Structured version   Visualization version   GIF version

Theorem tglineintmo 28587
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineintmo.a (𝜑𝐴 ∈ ran 𝐿)
tglineintmo.b (𝜑𝐵 ∈ ran 𝐿)
tglineintmo.c (𝜑𝐴𝐵)
Assertion
Ref Expression
tglineintmo (𝜑 → ∃*𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝐿(𝑥)

Proof of Theorem tglineintmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐺 ∈ TarskiG)
6 tglineintmo.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ran 𝐿)
7 elssuni 4888 . . . . . . . . . . . 12 (𝐴 ∈ ran 𝐿𝐴 ran 𝐿)
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝐴 ran 𝐿)
91, 3, 2tglnunirn 28493 . . . . . . . . . . . 12 (𝐺 ∈ TarskiG → ran 𝐿𝑃)
104, 9syl 17 . . . . . . . . . . 11 (𝜑 ran 𝐿𝑃)
118, 10sstrd 3946 . . . . . . . . . 10 (𝜑𝐴𝑃)
1211ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴𝑃)
13 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → (𝑥𝐴𝑥𝐵))
1413simpld 494 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝐴)
1512, 14sseldd 3936 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝑃)
16 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → (𝑦𝐴𝑦𝐵))
1716simpld 494 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝐴)
1812, 17sseldd 3936 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝑃)
19 simpr 484 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝑦)
206ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 ∈ ran 𝐿)
211, 2, 3, 5, 15, 18, 19, 19, 20, 14, 17tglinethru 28581 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 = (𝑥𝐿𝑦))
22 tglineintmo.b . . . . . . . . 9 (𝜑𝐵 ∈ ran 𝐿)
2322ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐵 ∈ ran 𝐿)
2413simprd 495 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝐵)
2516simprd 495 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝐵)
261, 2, 3, 5, 15, 18, 19, 19, 23, 24, 25tglinethru 28581 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐵 = (𝑥𝐿𝑦))
2721, 26eqtr4d 2767 . . . . . 6 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 = 𝐵)
28 tglineintmo.c . . . . . . . 8 (𝜑𝐴𝐵)
2928ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴𝐵)
3029neneqd 2930 . . . . . 6 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → ¬ 𝐴 = 𝐵)
3127, 30pm2.65da 816 . . . . 5 ((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → ¬ 𝑥𝑦)
32 nne 2929 . . . . 5 𝑥𝑦𝑥 = 𝑦)
3331, 32sylib 218 . . . 4 ((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → 𝑥 = 𝑦)
3433ex 412 . . 3 (𝜑 → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
3534alrimivv 1928 . 2 (𝜑 → ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
36 eleq1w 2811 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
37 eleq1w 2811 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
3836, 37anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
3938mo4 2559 . 2 (∃*𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
4035, 39sylibr 234 1 (𝜑 → ∃*𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2531  wne 2925  wss 3903   cuni 4858  ran crn 5620  cfv 6482  (class class class)co 7349  Basecbs 17120  TarskiGcstrkg 28372  Itvcitv 28378  LineGclng 28379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-trkgc 28393  df-trkgb 28394  df-trkgcb 28395  df-trkg 28398  df-cgrg 28456
This theorem is referenced by:  tglineineq  28588  tglineinteq  28590
  Copyright terms: Public domain W3C validator