MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineintmo Structured version   Visualization version   GIF version

Theorem tglineintmo 27293
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineintmo.a (𝜑𝐴 ∈ ran 𝐿)
tglineintmo.b (𝜑𝐵 ∈ ran 𝐿)
tglineintmo.c (𝜑𝐴𝐵)
Assertion
Ref Expression
tglineintmo (𝜑 → ∃*𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝐿(𝑥)

Proof of Theorem tglineintmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐺 ∈ TarskiG)
6 tglineintmo.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ran 𝐿)
7 elssuni 4886 . . . . . . . . . . . 12 (𝐴 ∈ ran 𝐿𝐴 ran 𝐿)
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝐴 ran 𝐿)
91, 3, 2tglnunirn 27199 . . . . . . . . . . . 12 (𝐺 ∈ TarskiG → ran 𝐿𝑃)
104, 9syl 17 . . . . . . . . . . 11 (𝜑 ran 𝐿𝑃)
118, 10sstrd 3942 . . . . . . . . . 10 (𝜑𝐴𝑃)
1211ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴𝑃)
13 simplrl 774 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → (𝑥𝐴𝑥𝐵))
1413simpld 495 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝐴)
1512, 14sseldd 3933 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝑃)
16 simplrr 775 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → (𝑦𝐴𝑦𝐵))
1716simpld 495 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝐴)
1812, 17sseldd 3933 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝑃)
19 simpr 485 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝑦)
206ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 ∈ ran 𝐿)
211, 2, 3, 5, 15, 18, 19, 19, 20, 14, 17tglinethru 27287 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 = (𝑥𝐿𝑦))
22 tglineintmo.b . . . . . . . . 9 (𝜑𝐵 ∈ ran 𝐿)
2322ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐵 ∈ ran 𝐿)
2413simprd 496 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝐵)
2516simprd 496 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝐵)
261, 2, 3, 5, 15, 18, 19, 19, 23, 24, 25tglinethru 27287 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐵 = (𝑥𝐿𝑦))
2721, 26eqtr4d 2779 . . . . . 6 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 = 𝐵)
28 tglineintmo.c . . . . . . . 8 (𝜑𝐴𝐵)
2928ad2antrr 723 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴𝐵)
3029neneqd 2945 . . . . . 6 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → ¬ 𝐴 = 𝐵)
3127, 30pm2.65da 814 . . . . 5 ((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → ¬ 𝑥𝑦)
32 nne 2944 . . . . 5 𝑥𝑦𝑥 = 𝑦)
3331, 32sylib 217 . . . 4 ((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → 𝑥 = 𝑦)
3433ex 413 . . 3 (𝜑 → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
3534alrimivv 1930 . 2 (𝜑 → ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
36 eleq1w 2819 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
37 eleq1w 2819 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
3836, 37anbi12d 631 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
3938mo4 2564 . 2 (∃*𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
4035, 39sylibr 233 1 (𝜑 → ∃*𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1538   = wceq 1540  wcel 2105  ∃*wmo 2536  wne 2940  wss 3898   cuni 4853  ran crn 5622  cfv 6480  (class class class)co 7338  Basecbs 17010  TarskiGcstrkg 27078  Itvcitv 27084  LineGclng 27085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4854  df-int 4896  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-1st 7900  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-1o 8368  df-oadd 8372  df-er 8570  df-pm 8690  df-en 8806  df-dom 8807  df-sdom 8808  df-fin 8809  df-dju 9759  df-card 9797  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-2 12138  df-3 12139  df-n0 12336  df-xnn0 12408  df-z 12422  df-uz 12685  df-fz 13342  df-fzo 13485  df-hash 14147  df-word 14319  df-concat 14375  df-s1 14401  df-s2 14661  df-s3 14662  df-trkgc 27099  df-trkgb 27100  df-trkgcb 27101  df-trkg 27104  df-cgrg 27162
This theorem is referenced by:  tglineineq  27294  tglineinteq  27296
  Copyright terms: Public domain W3C validator