| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bastop | Structured version Visualization version GIF version | ||
| Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| bastop | ⊢ (𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgtop 22927 | . 2 ⊢ (𝐵 ∈ Top → (topGen‘𝐵) = 𝐵) | |
| 2 | tgcl 22923 | . . 3 ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | |
| 3 | eleq1 2821 | . . 3 ⊢ ((topGen‘𝐵) = 𝐵 → ((topGen‘𝐵) ∈ Top ↔ 𝐵 ∈ Top)) | |
| 4 | 2, 3 | syl5ibcom 245 | . 2 ⊢ (𝐵 ∈ TopBases → ((topGen‘𝐵) = 𝐵 → 𝐵 ∈ Top)) |
| 5 | 1, 4 | impbid2 226 | 1 ⊢ (𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 topGenctg 17453 Topctop 22847 TopBasesctb 22899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-topgen 17459 df-top 22848 df-bases 22900 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |