Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bastop | Structured version Visualization version GIF version |
Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
bastop | ⊢ (𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop 21870 | . 2 ⊢ (𝐵 ∈ Top → (topGen‘𝐵) = 𝐵) | |
2 | tgcl 21866 | . . 3 ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | |
3 | eleq1 2825 | . . 3 ⊢ ((topGen‘𝐵) = 𝐵 → ((topGen‘𝐵) ∈ Top ↔ 𝐵 ∈ Top)) | |
4 | 2, 3 | syl5ibcom 248 | . 2 ⊢ (𝐵 ∈ TopBases → ((topGen‘𝐵) = 𝐵 → 𝐵 ∈ Top)) |
5 | 1, 4 | impbid2 229 | 1 ⊢ (𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 topGenctg 16942 Topctop 21790 TopBasesctb 21842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-topgen 16948 df-top 21791 df-bases 21843 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |