MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tg1 Structured version   Visualization version   GIF version

Theorem tg1 22937
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg1 (𝐴 ∈ (topGen‘𝐵) → 𝐴 𝐵)

Proof of Theorem tg1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6924 . 2 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
2 eltg2 22931 . . 3 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
32simprbda 498 . 2 ((𝐵 ∈ dom topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐴 𝐵)
41, 3mpancom 688 1 (𝐴 ∈ (topGen‘𝐵) → 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wral 3050  wrex 3059  wss 3933   cuni 4889  dom cdm 5667  cfv 6542  topGenctg 17458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-topgen 17464
This theorem is referenced by:  unitg  22940  tgcl  22942  ontgval  36373
  Copyright terms: Public domain W3C validator