MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  thlval Structured version   Visualization version   GIF version

Theorem thlval 21611
Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015.)
Hypotheses
Ref Expression
thlval.k 𝐾 = (toHL‘𝑊)
thlval.c 𝐶 = (ClSubSp‘𝑊)
thlval.i 𝐼 = (toInc‘𝐶)
thlval.o = (ocv‘𝑊)
Assertion
Ref Expression
thlval (𝑊𝑉𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))

Proof of Theorem thlval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝑊𝑉𝑊 ∈ V)
2 thlval.k . . 3 𝐾 = (toHL‘𝑊)
3 fveq2 6861 . . . . . . . 8 ( = 𝑊 → (ClSubSp‘) = (ClSubSp‘𝑊))
4 thlval.c . . . . . . . 8 𝐶 = (ClSubSp‘𝑊)
53, 4eqtr4di 2783 . . . . . . 7 ( = 𝑊 → (ClSubSp‘) = 𝐶)
65fveq2d 6865 . . . . . 6 ( = 𝑊 → (toInc‘(ClSubSp‘)) = (toInc‘𝐶))
7 thlval.i . . . . . 6 𝐼 = (toInc‘𝐶)
86, 7eqtr4di 2783 . . . . 5 ( = 𝑊 → (toInc‘(ClSubSp‘)) = 𝐼)
9 fveq2 6861 . . . . . . 7 ( = 𝑊 → (ocv‘) = (ocv‘𝑊))
10 thlval.o . . . . . . 7 = (ocv‘𝑊)
119, 10eqtr4di 2783 . . . . . 6 ( = 𝑊 → (ocv‘) = )
1211opeq2d 4847 . . . . 5 ( = 𝑊 → ⟨(oc‘ndx), (ocv‘)⟩ = ⟨(oc‘ndx), ⟩)
138, 12oveq12d 7408 . . . 4 ( = 𝑊 → ((toInc‘(ClSubSp‘)) sSet ⟨(oc‘ndx), (ocv‘)⟩) = (𝐼 sSet ⟨(oc‘ndx), ⟩))
14 df-thl 21581 . . . 4 toHL = ( ∈ V ↦ ((toInc‘(ClSubSp‘)) sSet ⟨(oc‘ndx), (ocv‘)⟩))
15 ovex 7423 . . . 4 (𝐼 sSet ⟨(oc‘ndx), ⟩) ∈ V
1613, 14, 15fvmpt 6971 . . 3 (𝑊 ∈ V → (toHL‘𝑊) = (𝐼 sSet ⟨(oc‘ndx), ⟩))
172, 16eqtrid 2777 . 2 (𝑊 ∈ V → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))
181, 17syl 17 1 (𝑊𝑉𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598  cfv 6514  (class class class)co 7390   sSet csts 17140  ndxcnx 17170  occoc 17235  toInccipo 18493  ocvcocv 21576  ClSubSpccss 21577  toHLcthl 21578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-thl 21581
This theorem is referenced by:  thlbas  21612  thlle  21613  thloc  21615
  Copyright terms: Public domain W3C validator