| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > thlval | Structured version Visualization version GIF version | ||
| Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| Ref | Expression |
|---|---|
| thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
| thlval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| thlval.i | ⊢ 𝐼 = (toInc‘𝐶) |
| thlval.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| thlval | ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 2 | thlval.k | . . 3 ⊢ 𝐾 = (toHL‘𝑊) | |
| 3 | fveq2 6861 | . . . . . . . 8 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = (ClSubSp‘𝑊)) | |
| 4 | thlval.c | . . . . . . . 8 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2783 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = 𝐶) |
| 6 | 5 | fveq2d 6865 | . . . . . 6 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = (toInc‘𝐶)) |
| 7 | thlval.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐶) | |
| 8 | 6, 7 | eqtr4di 2783 | . . . . 5 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = 𝐼) |
| 9 | fveq2 6861 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = (ocv‘𝑊)) | |
| 10 | thlval.o | . . . . . . 7 ⊢ ⊥ = (ocv‘𝑊) | |
| 11 | 9, 10 | eqtr4di 2783 | . . . . . 6 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = ⊥ ) |
| 12 | 11 | opeq2d 4847 | . . . . 5 ⊢ (ℎ = 𝑊 → 〈(oc‘ndx), (ocv‘ℎ)〉 = 〈(oc‘ndx), ⊥ 〉) |
| 13 | 8, 12 | oveq12d 7408 | . . . 4 ⊢ (ℎ = 𝑊 → ((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉) = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| 14 | df-thl 21581 | . . . 4 ⊢ toHL = (ℎ ∈ V ↦ ((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉)) | |
| 15 | ovex 7423 | . . . 4 ⊢ (𝐼 sSet 〈(oc‘ndx), ⊥ 〉) ∈ V | |
| 16 | 13, 14, 15 | fvmpt 6971 | . . 3 ⊢ (𝑊 ∈ V → (toHL‘𝑊) = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| 17 | 2, 16 | eqtrid 2777 | . 2 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| 18 | 1, 17 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 ndxcnx 17170 occoc 17235 toInccipo 18493 ocvcocv 21576 ClSubSpccss 21577 toHLcthl 21578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-thl 21581 |
| This theorem is referenced by: thlbas 21612 thlle 21613 thloc 21615 |
| Copyright terms: Public domain | W3C validator |