MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  thlval Structured version   Visualization version   GIF version

Theorem thlval 21668
Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015.)
Hypotheses
Ref Expression
thlval.k 𝐾 = (toHL‘𝑊)
thlval.c 𝐶 = (ClSubSp‘𝑊)
thlval.i 𝐼 = (toInc‘𝐶)
thlval.o = (ocv‘𝑊)
Assertion
Ref Expression
thlval (𝑊𝑉𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))

Proof of Theorem thlval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3484 . 2 (𝑊𝑉𝑊 ∈ V)
2 thlval.k . . 3 𝐾 = (toHL‘𝑊)
3 fveq2 6886 . . . . . . . 8 ( = 𝑊 → (ClSubSp‘) = (ClSubSp‘𝑊))
4 thlval.c . . . . . . . 8 𝐶 = (ClSubSp‘𝑊)
53, 4eqtr4di 2787 . . . . . . 7 ( = 𝑊 → (ClSubSp‘) = 𝐶)
65fveq2d 6890 . . . . . 6 ( = 𝑊 → (toInc‘(ClSubSp‘)) = (toInc‘𝐶))
7 thlval.i . . . . . 6 𝐼 = (toInc‘𝐶)
86, 7eqtr4di 2787 . . . . 5 ( = 𝑊 → (toInc‘(ClSubSp‘)) = 𝐼)
9 fveq2 6886 . . . . . . 7 ( = 𝑊 → (ocv‘) = (ocv‘𝑊))
10 thlval.o . . . . . . 7 = (ocv‘𝑊)
119, 10eqtr4di 2787 . . . . . 6 ( = 𝑊 → (ocv‘) = )
1211opeq2d 4860 . . . . 5 ( = 𝑊 → ⟨(oc‘ndx), (ocv‘)⟩ = ⟨(oc‘ndx), ⟩)
138, 12oveq12d 7431 . . . 4 ( = 𝑊 → ((toInc‘(ClSubSp‘)) sSet ⟨(oc‘ndx), (ocv‘)⟩) = (𝐼 sSet ⟨(oc‘ndx), ⟩))
14 df-thl 21638 . . . 4 toHL = ( ∈ V ↦ ((toInc‘(ClSubSp‘)) sSet ⟨(oc‘ndx), (ocv‘)⟩))
15 ovex 7446 . . . 4 (𝐼 sSet ⟨(oc‘ndx), ⟩) ∈ V
1613, 14, 15fvmpt 6996 . . 3 (𝑊 ∈ V → (toHL‘𝑊) = (𝐼 sSet ⟨(oc‘ndx), ⟩))
172, 16eqtrid 2781 . 2 (𝑊 ∈ V → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))
181, 17syl 17 1 (𝑊𝑉𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  cop 4612  cfv 6541  (class class class)co 7413   sSet csts 17183  ndxcnx 17213  occoc 17282  toInccipo 18542  ocvcocv 21633  ClSubSpccss 21634  toHLcthl 21635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-thl 21638
This theorem is referenced by:  thlbas  21669  thlbasOLD  21670  thlle  21671  thlleOLD  21672  thloc  21674
  Copyright terms: Public domain W3C validator