![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > thlval | Structured version Visualization version GIF version |
Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
thlval.i | ⊢ 𝐼 = (toInc‘𝐶) |
thlval.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
thlval | ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3462 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
2 | thlval.k | . . 3 ⊢ 𝐾 = (toHL‘𝑊) | |
3 | fveq2 6843 | . . . . . . . 8 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = (ClSubSp‘𝑊)) | |
4 | thlval.c | . . . . . . . 8 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
5 | 3, 4 | eqtr4di 2791 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = 𝐶) |
6 | 5 | fveq2d 6847 | . . . . . 6 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = (toInc‘𝐶)) |
7 | thlval.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐶) | |
8 | 6, 7 | eqtr4di 2791 | . . . . 5 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = 𝐼) |
9 | fveq2 6843 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = (ocv‘𝑊)) | |
10 | thlval.o | . . . . . . 7 ⊢ ⊥ = (ocv‘𝑊) | |
11 | 9, 10 | eqtr4di 2791 | . . . . . 6 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = ⊥ ) |
12 | 11 | opeq2d 4838 | . . . . 5 ⊢ (ℎ = 𝑊 → ⟨(oc‘ndx), (ocv‘ℎ)⟩ = ⟨(oc‘ndx), ⊥ ⟩) |
13 | 8, 12 | oveq12d 7376 | . . . 4 ⊢ (ℎ = 𝑊 → ((toInc‘(ClSubSp‘ℎ)) sSet ⟨(oc‘ndx), (ocv‘ℎ)⟩) = (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩)) |
14 | df-thl 21085 | . . . 4 ⊢ toHL = (ℎ ∈ V ↦ ((toInc‘(ClSubSp‘ℎ)) sSet ⟨(oc‘ndx), (ocv‘ℎ)⟩)) | |
15 | ovex 7391 | . . . 4 ⊢ (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩) ∈ V | |
16 | 13, 14, 15 | fvmpt 6949 | . . 3 ⊢ (𝑊 ∈ V → (toHL‘𝑊) = (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩)) |
17 | 2, 16 | eqtrid 2785 | . 2 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩)) |
18 | 1, 17 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ⟨cop 4593 ‘cfv 6497 (class class class)co 7358 sSet csts 17040 ndxcnx 17070 occoc 17146 toInccipo 18421 ocvcocv 21080 ClSubSpccss 21081 toHLcthl 21082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-iota 6449 df-fun 6499 df-fv 6505 df-ov 7361 df-thl 21085 |
This theorem is referenced by: thlbas 21116 thlbasOLD 21117 thlle 21118 thlleOLD 21119 thloc 21121 |
Copyright terms: Public domain | W3C validator |