MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  thlval Structured version   Visualization version   GIF version

Theorem thlval 21604
Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015.)
Hypotheses
Ref Expression
thlval.k 𝐾 = (toHL‘𝑊)
thlval.c 𝐶 = (ClSubSp‘𝑊)
thlval.i 𝐼 = (toInc‘𝐶)
thlval.o = (ocv‘𝑊)
Assertion
Ref Expression
thlval (𝑊𝑉𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))

Proof of Theorem thlval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝑊𝑉𝑊 ∈ V)
2 thlval.k . . 3 𝐾 = (toHL‘𝑊)
3 fveq2 6858 . . . . . . . 8 ( = 𝑊 → (ClSubSp‘) = (ClSubSp‘𝑊))
4 thlval.c . . . . . . . 8 𝐶 = (ClSubSp‘𝑊)
53, 4eqtr4di 2782 . . . . . . 7 ( = 𝑊 → (ClSubSp‘) = 𝐶)
65fveq2d 6862 . . . . . 6 ( = 𝑊 → (toInc‘(ClSubSp‘)) = (toInc‘𝐶))
7 thlval.i . . . . . 6 𝐼 = (toInc‘𝐶)
86, 7eqtr4di 2782 . . . . 5 ( = 𝑊 → (toInc‘(ClSubSp‘)) = 𝐼)
9 fveq2 6858 . . . . . . 7 ( = 𝑊 → (ocv‘) = (ocv‘𝑊))
10 thlval.o . . . . . . 7 = (ocv‘𝑊)
119, 10eqtr4di 2782 . . . . . 6 ( = 𝑊 → (ocv‘) = )
1211opeq2d 4844 . . . . 5 ( = 𝑊 → ⟨(oc‘ndx), (ocv‘)⟩ = ⟨(oc‘ndx), ⟩)
138, 12oveq12d 7405 . . . 4 ( = 𝑊 → ((toInc‘(ClSubSp‘)) sSet ⟨(oc‘ndx), (ocv‘)⟩) = (𝐼 sSet ⟨(oc‘ndx), ⟩))
14 df-thl 21574 . . . 4 toHL = ( ∈ V ↦ ((toInc‘(ClSubSp‘)) sSet ⟨(oc‘ndx), (ocv‘)⟩))
15 ovex 7420 . . . 4 (𝐼 sSet ⟨(oc‘ndx), ⟩) ∈ V
1613, 14, 15fvmpt 6968 . . 3 (𝑊 ∈ V → (toHL‘𝑊) = (𝐼 sSet ⟨(oc‘ndx), ⟩))
172, 16eqtrid 2776 . 2 (𝑊 ∈ V → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))
181, 17syl 17 1 (𝑊𝑉𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  cfv 6511  (class class class)co 7387   sSet csts 17133  ndxcnx 17163  occoc 17228  toInccipo 18486  ocvcocv 21569  ClSubSpccss 21570  toHLcthl 21571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-thl 21574
This theorem is referenced by:  thlbas  21605  thlle  21606  thloc  21608
  Copyright terms: Public domain W3C validator