| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > thlval | Structured version Visualization version GIF version | ||
| Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| Ref | Expression |
|---|---|
| thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
| thlval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| thlval.i | ⊢ 𝐼 = (toInc‘𝐶) |
| thlval.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| thlval | ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3484 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 2 | thlval.k | . . 3 ⊢ 𝐾 = (toHL‘𝑊) | |
| 3 | fveq2 6886 | . . . . . . . 8 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = (ClSubSp‘𝑊)) | |
| 4 | thlval.c | . . . . . . . 8 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2787 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = 𝐶) |
| 6 | 5 | fveq2d 6890 | . . . . . 6 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = (toInc‘𝐶)) |
| 7 | thlval.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐶) | |
| 8 | 6, 7 | eqtr4di 2787 | . . . . 5 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = 𝐼) |
| 9 | fveq2 6886 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = (ocv‘𝑊)) | |
| 10 | thlval.o | . . . . . . 7 ⊢ ⊥ = (ocv‘𝑊) | |
| 11 | 9, 10 | eqtr4di 2787 | . . . . . 6 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = ⊥ ) |
| 12 | 11 | opeq2d 4860 | . . . . 5 ⊢ (ℎ = 𝑊 → 〈(oc‘ndx), (ocv‘ℎ)〉 = 〈(oc‘ndx), ⊥ 〉) |
| 13 | 8, 12 | oveq12d 7431 | . . . 4 ⊢ (ℎ = 𝑊 → ((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉) = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| 14 | df-thl 21638 | . . . 4 ⊢ toHL = (ℎ ∈ V ↦ ((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉)) | |
| 15 | ovex 7446 | . . . 4 ⊢ (𝐼 sSet 〈(oc‘ndx), ⊥ 〉) ∈ V | |
| 16 | 13, 14, 15 | fvmpt 6996 | . . 3 ⊢ (𝑊 ∈ V → (toHL‘𝑊) = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| 17 | 2, 16 | eqtrid 2781 | . 2 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| 18 | 1, 17 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 〈cop 4612 ‘cfv 6541 (class class class)co 7413 sSet csts 17183 ndxcnx 17213 occoc 17282 toInccipo 18542 ocvcocv 21633 ClSubSpccss 21634 toHLcthl 21635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-thl 21638 |
| This theorem is referenced by: thlbas 21669 thlbasOLD 21670 thlle 21671 thlleOLD 21672 thloc 21674 |
| Copyright terms: Public domain | W3C validator |