Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > thlval | Structured version Visualization version GIF version |
Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
thlval.i | ⊢ 𝐼 = (toInc‘𝐶) |
thlval.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
thlval | ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
2 | thlval.k | . . 3 ⊢ 𝐾 = (toHL‘𝑊) | |
3 | fveq2 6774 | . . . . . . . 8 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = (ClSubSp‘𝑊)) | |
4 | thlval.c | . . . . . . . 8 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
5 | 3, 4 | eqtr4di 2796 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = 𝐶) |
6 | 5 | fveq2d 6778 | . . . . . 6 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = (toInc‘𝐶)) |
7 | thlval.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐶) | |
8 | 6, 7 | eqtr4di 2796 | . . . . 5 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = 𝐼) |
9 | fveq2 6774 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = (ocv‘𝑊)) | |
10 | thlval.o | . . . . . . 7 ⊢ ⊥ = (ocv‘𝑊) | |
11 | 9, 10 | eqtr4di 2796 | . . . . . 6 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = ⊥ ) |
12 | 11 | opeq2d 4811 | . . . . 5 ⊢ (ℎ = 𝑊 → 〈(oc‘ndx), (ocv‘ℎ)〉 = 〈(oc‘ndx), ⊥ 〉) |
13 | 8, 12 | oveq12d 7293 | . . . 4 ⊢ (ℎ = 𝑊 → ((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉) = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
14 | df-thl 20870 | . . . 4 ⊢ toHL = (ℎ ∈ V ↦ ((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉)) | |
15 | ovex 7308 | . . . 4 ⊢ (𝐼 sSet 〈(oc‘ndx), ⊥ 〉) ∈ V | |
16 | 13, 14, 15 | fvmpt 6875 | . . 3 ⊢ (𝑊 ∈ V → (toHL‘𝑊) = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
17 | 2, 16 | eqtrid 2790 | . 2 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
18 | 1, 17 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 ‘cfv 6433 (class class class)co 7275 sSet csts 16864 ndxcnx 16894 occoc 16970 toInccipo 18245 ocvcocv 20865 ClSubSpccss 20866 toHLcthl 20867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-thl 20870 |
This theorem is referenced by: thlbas 20901 thlbasOLD 20902 thlle 20903 thlleOLD 20904 thloc 20906 |
Copyright terms: Public domain | W3C validator |