![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > thlval | Structured version Visualization version GIF version |
Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
thlval.i | ⊢ 𝐼 = (toInc‘𝐶) |
thlval.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
thlval | ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
2 | thlval.k | . . 3 ⊢ 𝐾 = (toHL‘𝑊) | |
3 | fveq2 6888 | . . . . . . . 8 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = (ClSubSp‘𝑊)) | |
4 | thlval.c | . . . . . . . 8 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
5 | 3, 4 | eqtr4di 2790 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = 𝐶) |
6 | 5 | fveq2d 6892 | . . . . . 6 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = (toInc‘𝐶)) |
7 | thlval.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐶) | |
8 | 6, 7 | eqtr4di 2790 | . . . . 5 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = 𝐼) |
9 | fveq2 6888 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = (ocv‘𝑊)) | |
10 | thlval.o | . . . . . . 7 ⊢ ⊥ = (ocv‘𝑊) | |
11 | 9, 10 | eqtr4di 2790 | . . . . . 6 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = ⊥ ) |
12 | 11 | opeq2d 4879 | . . . . 5 ⊢ (ℎ = 𝑊 → ⟨(oc‘ndx), (ocv‘ℎ)⟩ = ⟨(oc‘ndx), ⊥ ⟩) |
13 | 8, 12 | oveq12d 7423 | . . . 4 ⊢ (ℎ = 𝑊 → ((toInc‘(ClSubSp‘ℎ)) sSet ⟨(oc‘ndx), (ocv‘ℎ)⟩) = (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩)) |
14 | df-thl 21209 | . . . 4 ⊢ toHL = (ℎ ∈ V ↦ ((toInc‘(ClSubSp‘ℎ)) sSet ⟨(oc‘ndx), (ocv‘ℎ)⟩)) | |
15 | ovex 7438 | . . . 4 ⊢ (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩) ∈ V | |
16 | 13, 14, 15 | fvmpt 6995 | . . 3 ⊢ (𝑊 ∈ V → (toHL‘𝑊) = (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩)) |
17 | 2, 16 | eqtrid 2784 | . 2 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩)) |
18 | 1, 17 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⊥ ⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 ‘cfv 6540 (class class class)co 7405 sSet csts 17092 ndxcnx 17122 occoc 17201 toInccipo 18476 ocvcocv 21204 ClSubSpccss 21205 toHLcthl 21206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-thl 21209 |
This theorem is referenced by: thlbas 21240 thlbasOLD 21241 thlle 21242 thlleOLD 21243 thloc 21245 |
Copyright terms: Public domain | W3C validator |