| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > thlval | Structured version Visualization version GIF version | ||
| Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| Ref | Expression |
|---|---|
| thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
| thlval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| thlval.i | ⊢ 𝐼 = (toInc‘𝐶) |
| thlval.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| thlval | ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 2 | thlval.k | . . 3 ⊢ 𝐾 = (toHL‘𝑊) | |
| 3 | fveq2 6817 | . . . . . . . 8 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = (ClSubSp‘𝑊)) | |
| 4 | thlval.c | . . . . . . . 8 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2784 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ClSubSp‘ℎ) = 𝐶) |
| 6 | 5 | fveq2d 6821 | . . . . . 6 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = (toInc‘𝐶)) |
| 7 | thlval.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐶) | |
| 8 | 6, 7 | eqtr4di 2784 | . . . . 5 ⊢ (ℎ = 𝑊 → (toInc‘(ClSubSp‘ℎ)) = 𝐼) |
| 9 | fveq2 6817 | . . . . . . 7 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = (ocv‘𝑊)) | |
| 10 | thlval.o | . . . . . . 7 ⊢ ⊥ = (ocv‘𝑊) | |
| 11 | 9, 10 | eqtr4di 2784 | . . . . . 6 ⊢ (ℎ = 𝑊 → (ocv‘ℎ) = ⊥ ) |
| 12 | 11 | opeq2d 4827 | . . . . 5 ⊢ (ℎ = 𝑊 → 〈(oc‘ndx), (ocv‘ℎ)〉 = 〈(oc‘ndx), ⊥ 〉) |
| 13 | 8, 12 | oveq12d 7359 | . . . 4 ⊢ (ℎ = 𝑊 → ((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉) = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| 14 | df-thl 21597 | . . . 4 ⊢ toHL = (ℎ ∈ V ↦ ((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉)) | |
| 15 | ovex 7374 | . . . 4 ⊢ (𝐼 sSet 〈(oc‘ndx), ⊥ 〉) ∈ V | |
| 16 | 13, 14, 15 | fvmpt 6924 | . . 3 ⊢ (𝑊 ∈ V → (toHL‘𝑊) = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| 17 | 2, 16 | eqtrid 2778 | . 2 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| 18 | 1, 17 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑉 → 𝐾 = (𝐼 sSet 〈(oc‘ndx), ⊥ 〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4577 ‘cfv 6476 (class class class)co 7341 sSet csts 17069 ndxcnx 17099 occoc 17164 toInccipo 18428 ocvcocv 21592 ClSubSpccss 21593 toHLcthl 21594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-thl 21597 |
| This theorem is referenced by: thlbas 21628 thlle 21629 thloc 21631 |
| Copyright terms: Public domain | W3C validator |