MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  thlval Structured version   Visualization version   GIF version

Theorem thlval 20900
Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015.)
Hypotheses
Ref Expression
thlval.k 𝐾 = (toHL‘𝑊)
thlval.c 𝐶 = (ClSubSp‘𝑊)
thlval.i 𝐼 = (toInc‘𝐶)
thlval.o = (ocv‘𝑊)
Assertion
Ref Expression
thlval (𝑊𝑉𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))

Proof of Theorem thlval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝑊𝑉𝑊 ∈ V)
2 thlval.k . . 3 𝐾 = (toHL‘𝑊)
3 fveq2 6774 . . . . . . . 8 ( = 𝑊 → (ClSubSp‘) = (ClSubSp‘𝑊))
4 thlval.c . . . . . . . 8 𝐶 = (ClSubSp‘𝑊)
53, 4eqtr4di 2796 . . . . . . 7 ( = 𝑊 → (ClSubSp‘) = 𝐶)
65fveq2d 6778 . . . . . 6 ( = 𝑊 → (toInc‘(ClSubSp‘)) = (toInc‘𝐶))
7 thlval.i . . . . . 6 𝐼 = (toInc‘𝐶)
86, 7eqtr4di 2796 . . . . 5 ( = 𝑊 → (toInc‘(ClSubSp‘)) = 𝐼)
9 fveq2 6774 . . . . . . 7 ( = 𝑊 → (ocv‘) = (ocv‘𝑊))
10 thlval.o . . . . . . 7 = (ocv‘𝑊)
119, 10eqtr4di 2796 . . . . . 6 ( = 𝑊 → (ocv‘) = )
1211opeq2d 4811 . . . . 5 ( = 𝑊 → ⟨(oc‘ndx), (ocv‘)⟩ = ⟨(oc‘ndx), ⟩)
138, 12oveq12d 7293 . . . 4 ( = 𝑊 → ((toInc‘(ClSubSp‘)) sSet ⟨(oc‘ndx), (ocv‘)⟩) = (𝐼 sSet ⟨(oc‘ndx), ⟩))
14 df-thl 20870 . . . 4 toHL = ( ∈ V ↦ ((toInc‘(ClSubSp‘)) sSet ⟨(oc‘ndx), (ocv‘)⟩))
15 ovex 7308 . . . 4 (𝐼 sSet ⟨(oc‘ndx), ⟩) ∈ V
1613, 14, 15fvmpt 6875 . . 3 (𝑊 ∈ V → (toHL‘𝑊) = (𝐼 sSet ⟨(oc‘ndx), ⟩))
172, 16eqtrid 2790 . 2 (𝑊 ∈ V → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))
181, 17syl 17 1 (𝑊𝑉𝐾 = (𝐼 sSet ⟨(oc‘ndx), ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567  cfv 6433  (class class class)co 7275   sSet csts 16864  ndxcnx 16894  occoc 16970  toInccipo 18245  ocvcocv 20865  ClSubSpccss 20866  toHLcthl 20867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-thl 20870
This theorem is referenced by:  thlbas  20901  thlbasOLD  20902  thlle  20903  thlleOLD  20904  thloc  20906
  Copyright terms: Public domain W3C validator