| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrccss | Structured version Visualization version GIF version | ||
| Description: The Moore closure corresponding to the system of closed subspaces is the double orthocomplement operation. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| mrccss.v | ⊢ 𝑉 = (Base‘𝑊) |
| mrccss.o | ⊢ ⊥ = (ocv‘𝑊) |
| mrccss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| mrccss.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrccss | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrccss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | mrccss.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | 1, 2 | cssmre 21608 | . . . 4 ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝐶 ∈ (Moore‘𝑉)) |
| 5 | mrccss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 6 | 1, 5 | ocvocv 21586 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
| 7 | 1, 5 | ocvss 21585 | . . . . 5 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) ⊆ 𝑉) |
| 9 | 1, 2, 5 | ocvcss 21602 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ ( ⊥ ‘𝑆) ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) |
| 10 | 8, 9 | sylan2 593 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) |
| 11 | mrccss.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 12 | 11 | mrcsscl 17587 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) ∧ ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) → (𝐹‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
| 13 | 4, 6, 10, 12 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
| 14 | 11 | mrcssid 17584 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝐹‘𝑆)) |
| 15 | 3, 14 | sylan 580 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝐹‘𝑆)) |
| 16 | 5 | ocv2ss 21588 | . . . 4 ⊢ (𝑆 ⊆ (𝐹‘𝑆) → ( ⊥ ‘(𝐹‘𝑆)) ⊆ ( ⊥ ‘𝑆)) |
| 17 | 5 | ocv2ss 21588 | . . . 4 ⊢ (( ⊥ ‘(𝐹‘𝑆)) ⊆ ( ⊥ ‘𝑆) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
| 18 | 15, 16, 17 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
| 19 | 11 | mrccl 17578 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ∈ 𝐶) |
| 20 | 3, 19 | sylan 580 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ∈ 𝐶) |
| 21 | 5, 2 | cssi 21599 | . . . 4 ⊢ ((𝐹‘𝑆) ∈ 𝐶 → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
| 23 | 18, 22 | sseqtrrd 3992 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ (𝐹‘𝑆)) |
| 24 | 13, 23 | eqssd 3972 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 ‘cfv 6519 Basecbs 17185 Moorecmre 17549 mrClscmrc 17550 PreHilcphl 21539 ocvcocv 21575 ClSubSpccss 21576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-0g 17410 df-mre 17553 df-mrc 17554 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-ghm 19151 df-mgp 20056 df-ur 20097 df-ring 20150 df-oppr 20252 df-rhm 20387 df-staf 20754 df-srng 20755 df-lmod 20774 df-lmhm 20935 df-lvec 21016 df-sra 21086 df-rgmod 21087 df-phl 21541 df-ocv 21578 df-css 21579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |