| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrccss | Structured version Visualization version GIF version | ||
| Description: The Moore closure corresponding to the system of closed subspaces is the double orthocomplement operation. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| mrccss.v | ⊢ 𝑉 = (Base‘𝑊) |
| mrccss.o | ⊢ ⊥ = (ocv‘𝑊) |
| mrccss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| mrccss.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrccss | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrccss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | mrccss.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | 1, 2 | cssmre 21625 | . . . 4 ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝐶 ∈ (Moore‘𝑉)) |
| 5 | mrccss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 6 | 1, 5 | ocvocv 21603 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
| 7 | 1, 5 | ocvss 21602 | . . . . 5 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) ⊆ 𝑉) |
| 9 | 1, 2, 5 | ocvcss 21619 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ ( ⊥ ‘𝑆) ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) |
| 10 | 8, 9 | sylan2 593 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) |
| 11 | mrccss.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 12 | 11 | mrcsscl 17521 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) ∧ ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) → (𝐹‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
| 13 | 4, 6, 10, 12 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
| 14 | 11 | mrcssid 17518 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝐹‘𝑆)) |
| 15 | 3, 14 | sylan 580 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝐹‘𝑆)) |
| 16 | 5 | ocv2ss 21605 | . . . 4 ⊢ (𝑆 ⊆ (𝐹‘𝑆) → ( ⊥ ‘(𝐹‘𝑆)) ⊆ ( ⊥ ‘𝑆)) |
| 17 | 5 | ocv2ss 21605 | . . . 4 ⊢ (( ⊥ ‘(𝐹‘𝑆)) ⊆ ( ⊥ ‘𝑆) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
| 18 | 15, 16, 17 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
| 19 | 11 | mrccl 17512 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ∈ 𝐶) |
| 20 | 3, 19 | sylan 580 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ∈ 𝐶) |
| 21 | 5, 2 | cssi 21616 | . . . 4 ⊢ ((𝐹‘𝑆) ∈ 𝐶 → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
| 23 | 18, 22 | sseqtrrd 3967 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ (𝐹‘𝑆)) |
| 24 | 13, 23 | eqssd 3947 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6476 Basecbs 17115 Moorecmre 17479 mrClscmrc 17480 PreHilcphl 21556 ocvcocv 21592 ClSubSpccss 21593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-0g 17340 df-mre 17483 df-mrc 17484 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-ghm 19120 df-mgp 20054 df-ur 20095 df-ring 20148 df-oppr 20250 df-rhm 20385 df-staf 20749 df-srng 20750 df-lmod 20790 df-lmhm 20951 df-lvec 21032 df-sra 21102 df-rgmod 21103 df-phl 21558 df-ocv 21595 df-css 21596 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |