![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrccss | Structured version Visualization version GIF version |
Description: The Moore closure corresponding to the system of closed subspaces is the double orthocomplement operation. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
mrccss.v | ⊢ 𝑉 = (Base‘𝑊) |
mrccss.o | ⊢ ⊥ = (ocv‘𝑊) |
mrccss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
mrccss.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrccss | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrccss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | mrccss.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | 1, 2 | cssmre 21738 | . . . 4 ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝐶 ∈ (Moore‘𝑉)) |
5 | mrccss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
6 | 1, 5 | ocvocv 21716 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
7 | 1, 5 | ocvss 21715 | . . . . 5 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) ⊆ 𝑉) |
9 | 1, 2, 5 | ocvcss 21732 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ ( ⊥ ‘𝑆) ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) |
10 | 8, 9 | sylan2 593 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) |
11 | mrccss.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
12 | 11 | mrcsscl 17674 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) ∧ ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) → (𝐹‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
13 | 4, 6, 10, 12 | syl3anc 1372 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
14 | 11 | mrcssid 17671 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝐹‘𝑆)) |
15 | 3, 14 | sylan 580 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝐹‘𝑆)) |
16 | 5 | ocv2ss 21718 | . . . 4 ⊢ (𝑆 ⊆ (𝐹‘𝑆) → ( ⊥ ‘(𝐹‘𝑆)) ⊆ ( ⊥ ‘𝑆)) |
17 | 5 | ocv2ss 21718 | . . . 4 ⊢ (( ⊥ ‘(𝐹‘𝑆)) ⊆ ( ⊥ ‘𝑆) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
18 | 15, 16, 17 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
19 | 11 | mrccl 17665 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ∈ 𝐶) |
20 | 3, 19 | sylan 580 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ∈ 𝐶) |
21 | 5, 2 | cssi 21729 | . . . 4 ⊢ ((𝐹‘𝑆) ∈ 𝐶 → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
23 | 18, 22 | sseqtrrd 4040 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ (𝐹‘𝑆)) |
24 | 13, 23 | eqssd 4016 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 ‘cfv 6569 Basecbs 17254 Moorecmre 17636 mrClscmrc 17637 PreHilcphl 21669 ocvcocv 21705 ClSubSpccss 21706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-ip 17325 df-0g 17497 df-mre 17640 df-mrc 17641 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-mhm 18818 df-grp 18976 df-ghm 19253 df-mgp 20162 df-ur 20209 df-ring 20262 df-oppr 20360 df-rhm 20498 df-staf 20866 df-srng 20867 df-lmod 20886 df-lmhm 21048 df-lvec 21129 df-sra 21199 df-rgmod 21200 df-phl 21671 df-ocv 21708 df-css 21709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |