MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrccss Structured version   Visualization version   GIF version

Theorem mrccss 20811
Description: The Moore closure corresponding to the system of closed subspaces is the double orthocomplement operation. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
mrccss.v 𝑉 = (Base‘𝑊)
mrccss.o = (ocv‘𝑊)
mrccss.c 𝐶 = (ClSubSp‘𝑊)
mrccss.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrccss ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) = ( ‘( 𝑆)))

Proof of Theorem mrccss
StepHypRef Expression
1 mrccss.v . . . . 5 𝑉 = (Base‘𝑊)
2 mrccss.c . . . . 5 𝐶 = (ClSubSp‘𝑊)
31, 2cssmre 20810 . . . 4 (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))
43adantr 480 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝐶 ∈ (Moore‘𝑉))
5 mrccss.o . . . 4 = (ocv‘𝑊)
61, 5ocvocv 20788 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))
71, 5ocvss 20787 . . . . 5 ( 𝑆) ⊆ 𝑉
87a1i 11 . . . 4 (𝑆𝑉 → ( 𝑆) ⊆ 𝑉)
91, 2, 5ocvcss 20804 . . . 4 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → ( ‘( 𝑆)) ∈ 𝐶)
108, 9sylan2 592 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ∈ 𝐶)
11 mrccss.f . . . 4 𝐹 = (mrCls‘𝐶)
1211mrcsscl 17246 . . 3 ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ ( ‘( 𝑆)) ∧ ( ‘( 𝑆)) ∈ 𝐶) → (𝐹𝑆) ⊆ ( ‘( 𝑆)))
134, 6, 10, 12syl3anc 1369 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) ⊆ ( ‘( 𝑆)))
1411mrcssid 17243 . . . . 5 ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆𝑉) → 𝑆 ⊆ (𝐹𝑆))
153, 14sylan 579 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ (𝐹𝑆))
165ocv2ss 20790 . . . 4 (𝑆 ⊆ (𝐹𝑆) → ( ‘(𝐹𝑆)) ⊆ ( 𝑆))
175ocv2ss 20790 . . . 4 (( ‘(𝐹𝑆)) ⊆ ( 𝑆) → ( ‘( 𝑆)) ⊆ ( ‘( ‘(𝐹𝑆))))
1815, 16, 173syl 18 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ⊆ ( ‘( ‘(𝐹𝑆))))
1911mrccl 17237 . . . . 5 ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆𝑉) → (𝐹𝑆) ∈ 𝐶)
203, 19sylan 579 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) ∈ 𝐶)
215, 2cssi 20801 . . . 4 ((𝐹𝑆) ∈ 𝐶 → (𝐹𝑆) = ( ‘( ‘(𝐹𝑆))))
2220, 21syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) = ( ‘( ‘(𝐹𝑆))))
2318, 22sseqtrrd 3958 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ⊆ (𝐹𝑆))
2413, 23eqssd 3934 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) = ( ‘( 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  cfv 6418  Basecbs 16840  Moorecmre 17208  mrClscmrc 17209  PreHilcphl 20741  ocvcocv 20777  ClSubSpccss 20778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mre 17212  df-mrc 17213  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-ghm 18747  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-rnghom 19874  df-staf 20020  df-srng 20021  df-lmod 20040  df-lmhm 20199  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-phl 20743  df-ocv 20780  df-css 20781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator