MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrccss Structured version   Visualization version   GIF version

Theorem mrccss 21739
Description: The Moore closure corresponding to the system of closed subspaces is the double orthocomplement operation. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
mrccss.v 𝑉 = (Base‘𝑊)
mrccss.o = (ocv‘𝑊)
mrccss.c 𝐶 = (ClSubSp‘𝑊)
mrccss.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrccss ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) = ( ‘( 𝑆)))

Proof of Theorem mrccss
StepHypRef Expression
1 mrccss.v . . . . 5 𝑉 = (Base‘𝑊)
2 mrccss.c . . . . 5 𝐶 = (ClSubSp‘𝑊)
31, 2cssmre 21738 . . . 4 (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))
43adantr 480 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝐶 ∈ (Moore‘𝑉))
5 mrccss.o . . . 4 = (ocv‘𝑊)
61, 5ocvocv 21716 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))
71, 5ocvss 21715 . . . . 5 ( 𝑆) ⊆ 𝑉
87a1i 11 . . . 4 (𝑆𝑉 → ( 𝑆) ⊆ 𝑉)
91, 2, 5ocvcss 21732 . . . 4 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → ( ‘( 𝑆)) ∈ 𝐶)
108, 9sylan2 593 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ∈ 𝐶)
11 mrccss.f . . . 4 𝐹 = (mrCls‘𝐶)
1211mrcsscl 17674 . . 3 ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ ( ‘( 𝑆)) ∧ ( ‘( 𝑆)) ∈ 𝐶) → (𝐹𝑆) ⊆ ( ‘( 𝑆)))
134, 6, 10, 12syl3anc 1372 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) ⊆ ( ‘( 𝑆)))
1411mrcssid 17671 . . . . 5 ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆𝑉) → 𝑆 ⊆ (𝐹𝑆))
153, 14sylan 580 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ (𝐹𝑆))
165ocv2ss 21718 . . . 4 (𝑆 ⊆ (𝐹𝑆) → ( ‘(𝐹𝑆)) ⊆ ( 𝑆))
175ocv2ss 21718 . . . 4 (( ‘(𝐹𝑆)) ⊆ ( 𝑆) → ( ‘( 𝑆)) ⊆ ( ‘( ‘(𝐹𝑆))))
1815, 16, 173syl 18 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ⊆ ( ‘( ‘(𝐹𝑆))))
1911mrccl 17665 . . . . 5 ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆𝑉) → (𝐹𝑆) ∈ 𝐶)
203, 19sylan 580 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) ∈ 𝐶)
215, 2cssi 21729 . . . 4 ((𝐹𝑆) ∈ 𝐶 → (𝐹𝑆) = ( ‘( ‘(𝐹𝑆))))
2220, 21syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) = ( ‘( ‘(𝐹𝑆))))
2318, 22sseqtrrd 4040 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ⊆ (𝐹𝑆))
2413, 23eqssd 4016 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) = ( ‘( 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3966  cfv 6569  Basecbs 17254  Moorecmre 17636  mrClscmrc 17637  PreHilcphl 21669  ocvcocv 21705  ClSubSpccss 21706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-tpos 8259  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-plusg 17320  df-mulr 17321  df-sca 17323  df-vsca 17324  df-ip 17325  df-0g 17497  df-mre 17640  df-mrc 17641  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-mhm 18818  df-grp 18976  df-ghm 19253  df-mgp 20162  df-ur 20209  df-ring 20262  df-oppr 20360  df-rhm 20498  df-staf 20866  df-srng 20867  df-lmod 20886  df-lmhm 21048  df-lvec 21129  df-sra 21199  df-rgmod 21200  df-phl 21671  df-ocv 21708  df-css 21709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator