Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrccss Structured version   Visualization version   GIF version

Theorem mrccss 20381
 Description: The Moore closure corresponding to the system of closed subspaces is the double orthocomplement operation. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
mrccss.v 𝑉 = (Base‘𝑊)
mrccss.o = (ocv‘𝑊)
mrccss.c 𝐶 = (ClSubSp‘𝑊)
mrccss.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrccss ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) = ( ‘( 𝑆)))

Proof of Theorem mrccss
StepHypRef Expression
1 mrccss.v . . . . 5 𝑉 = (Base‘𝑊)
2 mrccss.c . . . . 5 𝐶 = (ClSubSp‘𝑊)
31, 2cssmre 20380 . . . 4 (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))
43adantr 484 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝐶 ∈ (Moore‘𝑉))
5 mrccss.o . . . 4 = (ocv‘𝑊)
61, 5ocvocv 20358 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))
71, 5ocvss 20357 . . . . 5 ( 𝑆) ⊆ 𝑉
87a1i 11 . . . 4 (𝑆𝑉 → ( 𝑆) ⊆ 𝑉)
91, 2, 5ocvcss 20374 . . . 4 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → ( ‘( 𝑆)) ∈ 𝐶)
108, 9sylan2 595 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ∈ 𝐶)
11 mrccss.f . . . 4 𝐹 = (mrCls‘𝐶)
1211mrcsscl 16882 . . 3 ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ ( ‘( 𝑆)) ∧ ( ‘( 𝑆)) ∈ 𝐶) → (𝐹𝑆) ⊆ ( ‘( 𝑆)))
134, 6, 10, 12syl3anc 1368 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) ⊆ ( ‘( 𝑆)))
1411mrcssid 16879 . . . . 5 ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆𝑉) → 𝑆 ⊆ (𝐹𝑆))
153, 14sylan 583 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ (𝐹𝑆))
165ocv2ss 20360 . . . 4 (𝑆 ⊆ (𝐹𝑆) → ( ‘(𝐹𝑆)) ⊆ ( 𝑆))
175ocv2ss 20360 . . . 4 (( ‘(𝐹𝑆)) ⊆ ( 𝑆) → ( ‘( 𝑆)) ⊆ ( ‘( ‘(𝐹𝑆))))
1815, 16, 173syl 18 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ⊆ ( ‘( ‘(𝐹𝑆))))
1911mrccl 16873 . . . . 5 ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆𝑉) → (𝐹𝑆) ∈ 𝐶)
203, 19sylan 583 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) ∈ 𝐶)
215, 2cssi 20371 . . . 4 ((𝐹𝑆) ∈ 𝐶 → (𝐹𝑆) = ( ‘( ‘(𝐹𝑆))))
2220, 21syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) = ( ‘( ‘(𝐹𝑆))))
2318, 22sseqtrrd 3983 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ⊆ (𝐹𝑆))
2413, 23eqssd 3959 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝐹𝑆) = ( ‘( 𝑆)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114   ⊆ wss 3908  ‘cfv 6334  Basecbs 16474  Moorecmre 16844  mrClscmrc 16845  PreHilcphl 20311  ocvcocv 20347  ClSubSpccss 20348 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-ip 16574  df-0g 16706  df-mre 16848  df-mrc 16849  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mhm 17947  df-grp 18097  df-ghm 18347  df-mgp 19231  df-ur 19243  df-ring 19290  df-oppr 19367  df-rnghom 19461  df-staf 19607  df-srng 19608  df-lmod 19627  df-lmhm 19785  df-lvec 19866  df-sra 19935  df-rgmod 19936  df-phl 20313  df-ocv 20350  df-css 20351 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator