| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > thloc | Structured version Visualization version GIF version | ||
| Description: Orthocomplement on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| Ref | Expression |
|---|---|
| thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
| thloc.c | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| thloc | ⊢ ⊥ = (oc‘𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6889 | . . . 4 ⊢ (toInc‘(ClSubSp‘𝑊)) ∈ V | |
| 2 | thloc.c | . . . . 5 ⊢ ⊥ = (ocv‘𝑊) | |
| 3 | 2 | fvexi 6890 | . . . 4 ⊢ ⊥ ∈ V |
| 4 | ocid 17396 | . . . . 5 ⊢ oc = Slot (oc‘ndx) | |
| 5 | 4 | setsid 17226 | . . . 4 ⊢ (((toInc‘(ClSubSp‘𝑊)) ∈ V ∧ ⊥ ∈ V) → ⊥ = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉))) |
| 6 | 1, 3, 5 | mp2an 692 | . . 3 ⊢ ⊥ = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉)) |
| 7 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
| 8 | eqid 2735 | . . . . 5 ⊢ (ClSubSp‘𝑊) = (ClSubSp‘𝑊) | |
| 9 | eqid 2735 | . . . . 5 ⊢ (toInc‘(ClSubSp‘𝑊)) = (toInc‘(ClSubSp‘𝑊)) | |
| 10 | 7, 8, 9, 2 | thlval 21655 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉)) |
| 11 | 10 | fveq2d 6880 | . . 3 ⊢ (𝑊 ∈ V → (oc‘𝐾) = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉))) |
| 12 | 6, 11 | eqtr4id 2789 | . 2 ⊢ (𝑊 ∈ V → ⊥ = (oc‘𝐾)) |
| 13 | 4 | str0 17208 | . . 3 ⊢ ∅ = (oc‘∅) |
| 14 | fvprc 6868 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ocv‘𝑊) = ∅) | |
| 15 | 2, 14 | eqtrid 2782 | . . 3 ⊢ (¬ 𝑊 ∈ V → ⊥ = ∅) |
| 16 | fvprc 6868 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
| 17 | 7, 16 | eqtrid 2782 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
| 18 | 17 | fveq2d 6880 | . . 3 ⊢ (¬ 𝑊 ∈ V → (oc‘𝐾) = (oc‘∅)) |
| 19 | 13, 15, 18 | 3eqtr4a 2796 | . 2 ⊢ (¬ 𝑊 ∈ V → ⊥ = (oc‘𝐾)) |
| 20 | 12, 19 | pm2.61i 182 | 1 ⊢ ⊥ = (oc‘𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 〈cop 4607 ‘cfv 6531 (class class class)co 7405 sSet csts 17182 ndxcnx 17212 occoc 17279 toInccipo 18537 ocvcocv 21620 ClSubSpccss 21621 toHLcthl 21622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-dec 12709 df-sets 17183 df-slot 17201 df-ndx 17213 df-ocomp 17292 df-thl 21625 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |