MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  thloc Structured version   Visualization version   GIF version

Theorem thloc 21646
Description: Orthocomplement on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.)
Hypotheses
Ref Expression
thlval.k 𝐾 = (toHL‘𝑊)
thloc.c = (ocv‘𝑊)
Assertion
Ref Expression
thloc = (oc‘𝐾)

Proof of Theorem thloc
StepHypRef Expression
1 fvex 6844 . . . 4 (toInc‘(ClSubSp‘𝑊)) ∈ V
2 thloc.c . . . . 5 = (ocv‘𝑊)
32fvexi 6845 . . . 4 ∈ V
4 ocid 17296 . . . . 5 oc = Slot (oc‘ndx)
54setsid 17128 . . . 4 (((toInc‘(ClSubSp‘𝑊)) ∈ V ∧ ∈ V) → = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet ⟨(oc‘ndx), ⟩)))
61, 3, 5mp2an 692 . . 3 = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet ⟨(oc‘ndx), ⟩))
7 thlval.k . . . . 5 𝐾 = (toHL‘𝑊)
8 eqid 2733 . . . . 5 (ClSubSp‘𝑊) = (ClSubSp‘𝑊)
9 eqid 2733 . . . . 5 (toInc‘(ClSubSp‘𝑊)) = (toInc‘(ClSubSp‘𝑊))
107, 8, 9, 2thlval 21642 . . . 4 (𝑊 ∈ V → 𝐾 = ((toInc‘(ClSubSp‘𝑊)) sSet ⟨(oc‘ndx), ⟩))
1110fveq2d 6835 . . 3 (𝑊 ∈ V → (oc‘𝐾) = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet ⟨(oc‘ndx), ⟩)))
126, 11eqtr4id 2787 . 2 (𝑊 ∈ V → = (oc‘𝐾))
134str0 17110 . . 3 ∅ = (oc‘∅)
14 fvprc 6823 . . . 4 𝑊 ∈ V → (ocv‘𝑊) = ∅)
152, 14eqtrid 2780 . . 3 𝑊 ∈ V → = ∅)
16 fvprc 6823 . . . . 5 𝑊 ∈ V → (toHL‘𝑊) = ∅)
177, 16eqtrid 2780 . . . 4 𝑊 ∈ V → 𝐾 = ∅)
1817fveq2d 6835 . . 3 𝑊 ∈ V → (oc‘𝐾) = (oc‘∅))
1913, 15, 183eqtr4a 2794 . 2 𝑊 ∈ V → = (oc‘𝐾))
2012, 19pm2.61i 182 1 = (oc‘𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3438  c0 4284  cop 4583  cfv 6489  (class class class)co 7355   sSet csts 17084  ndxcnx 17114  occoc 17179  toInccipo 18443  ocvcocv 21607  ClSubSpccss 21608  toHLcthl 21609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-ltxr 11161  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-dec 12599  df-sets 17085  df-slot 17103  df-ndx 17115  df-ocomp 17192  df-thl 21612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator