Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > thloc | Structured version Visualization version GIF version |
Description: Orthocomplement on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thloc.c | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
thloc | ⊢ ⊥ = (oc‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6838 | . . . 4 ⊢ (toInc‘(ClSubSp‘𝑊)) ∈ V | |
2 | thloc.c | . . . . 5 ⊢ ⊥ = (ocv‘𝑊) | |
3 | 2 | fvexi 6839 | . . . 4 ⊢ ⊥ ∈ V |
4 | ocid 17189 | . . . . 5 ⊢ oc = Slot (oc‘ndx) | |
5 | 4 | setsid 17006 | . . . 4 ⊢ (((toInc‘(ClSubSp‘𝑊)) ∈ V ∧ ⊥ ∈ V) → ⊥ = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉))) |
6 | 1, 3, 5 | mp2an 689 | . . 3 ⊢ ⊥ = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉)) |
7 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
8 | eqid 2736 | . . . . 5 ⊢ (ClSubSp‘𝑊) = (ClSubSp‘𝑊) | |
9 | eqid 2736 | . . . . 5 ⊢ (toInc‘(ClSubSp‘𝑊)) = (toInc‘(ClSubSp‘𝑊)) | |
10 | 7, 8, 9, 2 | thlval 21006 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉)) |
11 | 10 | fveq2d 6829 | . . 3 ⊢ (𝑊 ∈ V → (oc‘𝐾) = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉))) |
12 | 6, 11 | eqtr4id 2795 | . 2 ⊢ (𝑊 ∈ V → ⊥ = (oc‘𝐾)) |
13 | 4 | str0 16987 | . . 3 ⊢ ∅ = (oc‘∅) |
14 | fvprc 6817 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ocv‘𝑊) = ∅) | |
15 | 2, 14 | eqtrid 2788 | . . 3 ⊢ (¬ 𝑊 ∈ V → ⊥ = ∅) |
16 | fvprc 6817 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
17 | 7, 16 | eqtrid 2788 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
18 | 17 | fveq2d 6829 | . . 3 ⊢ (¬ 𝑊 ∈ V → (oc‘𝐾) = (oc‘∅)) |
19 | 13, 15, 18 | 3eqtr4a 2802 | . 2 ⊢ (¬ 𝑊 ∈ V → ⊥ = (oc‘𝐾)) |
20 | 12, 19 | pm2.61i 182 | 1 ⊢ ⊥ = (oc‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4269 〈cop 4579 ‘cfv 6479 (class class class)co 7337 sSet csts 16961 ndxcnx 16991 occoc 17067 toInccipo 18342 ocvcocv 20971 ClSubSpccss 20972 toHLcthl 20973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-ltxr 11115 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-dec 12539 df-sets 16962 df-slot 16980 df-ndx 16992 df-ocomp 17080 df-thl 20976 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |