| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > thloc | Structured version Visualization version GIF version | ||
| Description: Orthocomplement on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| Ref | Expression |
|---|---|
| thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
| thloc.c | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| thloc | ⊢ ⊥ = (oc‘𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6844 | . . . 4 ⊢ (toInc‘(ClSubSp‘𝑊)) ∈ V | |
| 2 | thloc.c | . . . . 5 ⊢ ⊥ = (ocv‘𝑊) | |
| 3 | 2 | fvexi 6845 | . . . 4 ⊢ ⊥ ∈ V |
| 4 | ocid 17296 | . . . . 5 ⊢ oc = Slot (oc‘ndx) | |
| 5 | 4 | setsid 17128 | . . . 4 ⊢ (((toInc‘(ClSubSp‘𝑊)) ∈ V ∧ ⊥ ∈ V) → ⊥ = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉))) |
| 6 | 1, 3, 5 | mp2an 692 | . . 3 ⊢ ⊥ = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉)) |
| 7 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
| 8 | eqid 2733 | . . . . 5 ⊢ (ClSubSp‘𝑊) = (ClSubSp‘𝑊) | |
| 9 | eqid 2733 | . . . . 5 ⊢ (toInc‘(ClSubSp‘𝑊)) = (toInc‘(ClSubSp‘𝑊)) | |
| 10 | 7, 8, 9, 2 | thlval 21642 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉)) |
| 11 | 10 | fveq2d 6835 | . . 3 ⊢ (𝑊 ∈ V → (oc‘𝐾) = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉))) |
| 12 | 6, 11 | eqtr4id 2787 | . 2 ⊢ (𝑊 ∈ V → ⊥ = (oc‘𝐾)) |
| 13 | 4 | str0 17110 | . . 3 ⊢ ∅ = (oc‘∅) |
| 14 | fvprc 6823 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ocv‘𝑊) = ∅) | |
| 15 | 2, 14 | eqtrid 2780 | . . 3 ⊢ (¬ 𝑊 ∈ V → ⊥ = ∅) |
| 16 | fvprc 6823 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
| 17 | 7, 16 | eqtrid 2780 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
| 18 | 17 | fveq2d 6835 | . . 3 ⊢ (¬ 𝑊 ∈ V → (oc‘𝐾) = (oc‘∅)) |
| 19 | 13, 15, 18 | 3eqtr4a 2794 | . 2 ⊢ (¬ 𝑊 ∈ V → ⊥ = (oc‘𝐾)) |
| 20 | 12, 19 | pm2.61i 182 | 1 ⊢ ⊥ = (oc‘𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ∅c0 4284 〈cop 4583 ‘cfv 6489 (class class class)co 7355 sSet csts 17084 ndxcnx 17114 occoc 17179 toInccipo 18443 ocvcocv 21607 ClSubSpccss 21608 toHLcthl 21609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-ltxr 11161 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-dec 12599 df-sets 17085 df-slot 17103 df-ndx 17115 df-ocomp 17192 df-thl 21612 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |