Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > thloc | Structured version Visualization version GIF version |
Description: Orthocomplement on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thloc.c | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
thloc | ⊢ ⊥ = (oc‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6817 | . . . 4 ⊢ (toInc‘(ClSubSp‘𝑊)) ∈ V | |
2 | thloc.c | . . . . 5 ⊢ ⊥ = (ocv‘𝑊) | |
3 | 2 | fvexi 6818 | . . . 4 ⊢ ⊥ ∈ V |
4 | ocid 17141 | . . . . 5 ⊢ oc = Slot (oc‘ndx) | |
5 | 4 | setsid 16958 | . . . 4 ⊢ (((toInc‘(ClSubSp‘𝑊)) ∈ V ∧ ⊥ ∈ V) → ⊥ = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉))) |
6 | 1, 3, 5 | mp2an 690 | . . 3 ⊢ ⊥ = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉)) |
7 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
8 | eqid 2736 | . . . . 5 ⊢ (ClSubSp‘𝑊) = (ClSubSp‘𝑊) | |
9 | eqid 2736 | . . . . 5 ⊢ (toInc‘(ClSubSp‘𝑊)) = (toInc‘(ClSubSp‘𝑊)) | |
10 | 7, 8, 9, 2 | thlval 20949 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉)) |
11 | 10 | fveq2d 6808 | . . 3 ⊢ (𝑊 ∈ V → (oc‘𝐾) = (oc‘((toInc‘(ClSubSp‘𝑊)) sSet 〈(oc‘ndx), ⊥ 〉))) |
12 | 6, 11 | eqtr4id 2795 | . 2 ⊢ (𝑊 ∈ V → ⊥ = (oc‘𝐾)) |
13 | 4 | str0 16939 | . . 3 ⊢ ∅ = (oc‘∅) |
14 | fvprc 6796 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ocv‘𝑊) = ∅) | |
15 | 2, 14 | eqtrid 2788 | . . 3 ⊢ (¬ 𝑊 ∈ V → ⊥ = ∅) |
16 | fvprc 6796 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
17 | 7, 16 | eqtrid 2788 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
18 | 17 | fveq2d 6808 | . . 3 ⊢ (¬ 𝑊 ∈ V → (oc‘𝐾) = (oc‘∅)) |
19 | 13, 15, 18 | 3eqtr4a 2802 | . 2 ⊢ (¬ 𝑊 ∈ V → ⊥ = (oc‘𝐾)) |
20 | 12, 19 | pm2.61i 182 | 1 ⊢ ⊥ = (oc‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∅c0 4262 〈cop 4571 ‘cfv 6458 (class class class)co 7307 sSet csts 16913 ndxcnx 16943 occoc 17019 toInccipo 18294 ocvcocv 20914 ClSubSpccss 20915 toHLcthl 20916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-ltxr 11064 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-dec 12488 df-sets 16914 df-slot 16932 df-ndx 16944 df-ocomp 17032 df-thl 20919 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |