![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > thlbas | Structured version Visualization version GIF version |
Description: Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
thlbas | ⊢ 𝐶 = (Base‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
2 | thlbas.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | eqid 2797 | . . . . 5 ⊢ (toInc‘𝐶) = (toInc‘𝐶) | |
4 | eqid 2797 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
5 | 1, 2, 3, 4 | thlval 20361 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
6 | 5 | fveq2d 6413 | . . 3 ⊢ (𝑊 ∈ V → (Base‘𝐾) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
7 | 2 | fvexi 6423 | . . . . 5 ⊢ 𝐶 ∈ V |
8 | 3 | ipobas 17467 | . . . . 5 ⊢ (𝐶 ∈ V → 𝐶 = (Base‘(toInc‘𝐶))) |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ 𝐶 = (Base‘(toInc‘𝐶)) |
10 | baseid 16241 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
11 | 1re 10326 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
12 | 1nn 11323 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
13 | 1nn0 11594 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
14 | 1lt10 11920 | . . . . . . . 8 ⊢ 1 < ;10 | |
15 | 12, 13, 13, 14 | declti 11818 | . . . . . . 7 ⊢ 1 < ;11 |
16 | 11, 15 | ltneii 10438 | . . . . . 6 ⊢ 1 ≠ ;11 |
17 | basendx 16245 | . . . . . . 7 ⊢ (Base‘ndx) = 1 | |
18 | ocndx 16372 | . . . . . . 7 ⊢ (oc‘ndx) = ;11 | |
19 | 17, 18 | neeq12i 3035 | . . . . . 6 ⊢ ((Base‘ndx) ≠ (oc‘ndx) ↔ 1 ≠ ;11) |
20 | 16, 19 | mpbir 223 | . . . . 5 ⊢ (Base‘ndx) ≠ (oc‘ndx) |
21 | 10, 20 | setsnid 16237 | . . . 4 ⊢ (Base‘(toInc‘𝐶)) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
22 | 9, 21 | eqtri 2819 | . . 3 ⊢ 𝐶 = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
23 | 6, 22 | syl6reqr 2850 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
24 | base0 16234 | . . 3 ⊢ ∅ = (Base‘∅) | |
25 | fvprc 6402 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ClSubSp‘𝑊) = ∅) | |
26 | 2, 25 | syl5eq 2843 | . . 3 ⊢ (¬ 𝑊 ∈ V → 𝐶 = ∅) |
27 | fvprc 6402 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
28 | 1, 27 | syl5eq 2843 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
29 | 28 | fveq2d 6413 | . . 3 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐾) = (Base‘∅)) |
30 | 24, 26, 29 | 3eqtr4a 2857 | . 2 ⊢ (¬ 𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
31 | 23, 30 | pm2.61i 177 | 1 ⊢ 𝐶 = (Base‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 Vcvv 3383 ∅c0 4113 〈cop 4372 ‘cfv 6099 (class class class)co 6876 1c1 10223 ;cdc 11779 ndxcnx 16178 sSet csts 16179 Basecbs 16181 occoc 16272 toInccipo 17463 ocvcocv 20326 ClSubSpccss 20327 toHLcthl 20328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-tset 16283 df-ple 16284 df-ocomp 16285 df-ipo 17464 df-thl 20331 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |