| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > thlbas | Structured version Visualization version GIF version | ||
| Description: Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof shortened by AV, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
| thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| thlbas | ⊢ 𝐶 = (Base‘𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlbas.c | . . . . . 6 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 2 | 1 | fvexi 6831 | . . . . 5 ⊢ 𝐶 ∈ V |
| 3 | eqid 2731 | . . . . . 6 ⊢ (toInc‘𝐶) = (toInc‘𝐶) | |
| 4 | 3 | ipobas 18432 | . . . . 5 ⊢ (𝐶 ∈ V → 𝐶 = (Base‘(toInc‘𝐶))) |
| 5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ 𝐶 = (Base‘(toInc‘𝐶)) |
| 6 | baseid 17118 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
| 7 | basendxnocndx 17282 | . . . . 5 ⊢ (Base‘ndx) ≠ (oc‘ndx) | |
| 8 | 6, 7 | setsnid 17114 | . . . 4 ⊢ (Base‘(toInc‘𝐶)) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 9 | 5, 8 | eqtri 2754 | . . 3 ⊢ 𝐶 = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 10 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
| 11 | eqid 2731 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 12 | 10, 1, 3, 11 | thlval 21627 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 13 | 12 | fveq2d 6821 | . . 3 ⊢ (𝑊 ∈ V → (Base‘𝐾) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
| 14 | 9, 13 | eqtr4id 2785 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
| 15 | base0 17120 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 16 | fvprc 6809 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ClSubSp‘𝑊) = ∅) | |
| 17 | 1, 16 | eqtrid 2778 | . . 3 ⊢ (¬ 𝑊 ∈ V → 𝐶 = ∅) |
| 18 | fvprc 6809 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
| 19 | 10, 18 | eqtrid 2778 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
| 20 | 19 | fveq2d 6821 | . . 3 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐾) = (Base‘∅)) |
| 21 | 15, 17, 20 | 3eqtr4a 2792 | . 2 ⊢ (¬ 𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
| 22 | 14, 21 | pm2.61i 182 | 1 ⊢ 𝐶 = (Base‘𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 〈cop 4577 ‘cfv 6476 (class class class)co 7341 sSet csts 17069 ndxcnx 17099 Basecbs 17115 occoc 17164 toInccipo 18428 ocvcocv 21592 ClSubSpccss 21593 toHLcthl 21594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-tset 17175 df-ple 17176 df-ocomp 17177 df-ipo 18429 df-thl 21597 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |