| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > thlbas | Structured version Visualization version GIF version | ||
| Description: Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof shortened by AV, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
| thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| thlbas | ⊢ 𝐶 = (Base‘𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlbas.c | . . . . . 6 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 2 | 1 | fvexi 6872 | . . . . 5 ⊢ 𝐶 ∈ V |
| 3 | eqid 2729 | . . . . . 6 ⊢ (toInc‘𝐶) = (toInc‘𝐶) | |
| 4 | 3 | ipobas 18490 | . . . . 5 ⊢ (𝐶 ∈ V → 𝐶 = (Base‘(toInc‘𝐶))) |
| 5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ 𝐶 = (Base‘(toInc‘𝐶)) |
| 6 | baseid 17182 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
| 7 | basendxnocndx 17346 | . . . . 5 ⊢ (Base‘ndx) ≠ (oc‘ndx) | |
| 8 | 6, 7 | setsnid 17178 | . . . 4 ⊢ (Base‘(toInc‘𝐶)) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 9 | 5, 8 | eqtri 2752 | . . 3 ⊢ 𝐶 = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 10 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
| 11 | eqid 2729 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 12 | 10, 1, 3, 11 | thlval 21604 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 13 | 12 | fveq2d 6862 | . . 3 ⊢ (𝑊 ∈ V → (Base‘𝐾) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
| 14 | 9, 13 | eqtr4id 2783 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
| 15 | base0 17184 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 16 | fvprc 6850 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ClSubSp‘𝑊) = ∅) | |
| 17 | 1, 16 | eqtrid 2776 | . . 3 ⊢ (¬ 𝑊 ∈ V → 𝐶 = ∅) |
| 18 | fvprc 6850 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
| 19 | 10, 18 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
| 20 | 19 | fveq2d 6862 | . . 3 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐾) = (Base‘∅)) |
| 21 | 15, 17, 20 | 3eqtr4a 2790 | . 2 ⊢ (¬ 𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
| 22 | 14, 21 | pm2.61i 182 | 1 ⊢ 𝐶 = (Base‘𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 〈cop 4595 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 ndxcnx 17163 Basecbs 17179 occoc 17228 toInccipo 18486 ocvcocv 21569 ClSubSpccss 21570 toHLcthl 21571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-tset 17239 df-ple 17240 df-ocomp 17241 df-ipo 18487 df-thl 21574 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |