| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > thlbas | Structured version Visualization version GIF version | ||
| Description: Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof shortened by AV, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
| thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| thlbas | ⊢ 𝐶 = (Base‘𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlbas.c | . . . . . 6 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 2 | 1 | fvexi 6840 | . . . . 5 ⊢ 𝐶 ∈ V |
| 3 | eqid 2729 | . . . . . 6 ⊢ (toInc‘𝐶) = (toInc‘𝐶) | |
| 4 | 3 | ipobas 18456 | . . . . 5 ⊢ (𝐶 ∈ V → 𝐶 = (Base‘(toInc‘𝐶))) |
| 5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ 𝐶 = (Base‘(toInc‘𝐶)) |
| 6 | baseid 17142 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
| 7 | basendxnocndx 17306 | . . . . 5 ⊢ (Base‘ndx) ≠ (oc‘ndx) | |
| 8 | 6, 7 | setsnid 17138 | . . . 4 ⊢ (Base‘(toInc‘𝐶)) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 9 | 5, 8 | eqtri 2752 | . . 3 ⊢ 𝐶 = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 10 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
| 11 | eqid 2729 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 12 | 10, 1, 3, 11 | thlval 21621 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 13 | 12 | fveq2d 6830 | . . 3 ⊢ (𝑊 ∈ V → (Base‘𝐾) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
| 14 | 9, 13 | eqtr4id 2783 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
| 15 | base0 17144 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 16 | fvprc 6818 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ClSubSp‘𝑊) = ∅) | |
| 17 | 1, 16 | eqtrid 2776 | . . 3 ⊢ (¬ 𝑊 ∈ V → 𝐶 = ∅) |
| 18 | fvprc 6818 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
| 19 | 10, 18 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
| 20 | 19 | fveq2d 6830 | . . 3 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐾) = (Base‘∅)) |
| 21 | 15, 17, 20 | 3eqtr4a 2790 | . 2 ⊢ (¬ 𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
| 22 | 14, 21 | pm2.61i 182 | 1 ⊢ 𝐶 = (Base‘𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 〈cop 4585 ‘cfv 6486 (class class class)co 7353 sSet csts 17093 ndxcnx 17123 Basecbs 17139 occoc 17188 toInccipo 18452 ocvcocv 21586 ClSubSpccss 21587 toHLcthl 21588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-tset 17199 df-ple 17200 df-ocomp 17201 df-ipo 18453 df-thl 21591 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |