Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > thlbas | Structured version Visualization version GIF version |
Description: Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
thlbas | ⊢ 𝐶 = (Base‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlbas.c | . . . . . 6 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
2 | 1 | fvexi 6770 | . . . . 5 ⊢ 𝐶 ∈ V |
3 | eqid 2738 | . . . . . 6 ⊢ (toInc‘𝐶) = (toInc‘𝐶) | |
4 | 3 | ipobas 18164 | . . . . 5 ⊢ (𝐶 ∈ V → 𝐶 = (Base‘(toInc‘𝐶))) |
5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ 𝐶 = (Base‘(toInc‘𝐶)) |
6 | baseid 16843 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
7 | 1re 10906 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
8 | 1nn 11914 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
9 | 1nn0 12179 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
10 | 1lt10 12505 | . . . . . . . 8 ⊢ 1 < ;10 | |
11 | 8, 9, 9, 10 | declti 12404 | . . . . . . 7 ⊢ 1 < ;11 |
12 | 7, 11 | ltneii 11018 | . . . . . 6 ⊢ 1 ≠ ;11 |
13 | basendx 16849 | . . . . . . 7 ⊢ (Base‘ndx) = 1 | |
14 | ocndx 17014 | . . . . . . 7 ⊢ (oc‘ndx) = ;11 | |
15 | 13, 14 | neeq12i 3009 | . . . . . 6 ⊢ ((Base‘ndx) ≠ (oc‘ndx) ↔ 1 ≠ ;11) |
16 | 12, 15 | mpbir 230 | . . . . 5 ⊢ (Base‘ndx) ≠ (oc‘ndx) |
17 | 6, 16 | setsnid 16838 | . . . 4 ⊢ (Base‘(toInc‘𝐶)) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
18 | 5, 17 | eqtri 2766 | . . 3 ⊢ 𝐶 = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
19 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
20 | eqid 2738 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
21 | 19, 1, 3, 20 | thlval 20812 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
22 | 21 | fveq2d 6760 | . . 3 ⊢ (𝑊 ∈ V → (Base‘𝐾) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
23 | 18, 22 | eqtr4id 2798 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
24 | base0 16845 | . . 3 ⊢ ∅ = (Base‘∅) | |
25 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ClSubSp‘𝑊) = ∅) | |
26 | 1, 25 | eqtrid 2790 | . . 3 ⊢ (¬ 𝑊 ∈ V → 𝐶 = ∅) |
27 | fvprc 6748 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
28 | 19, 27 | eqtrid 2790 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
29 | 28 | fveq2d 6760 | . . 3 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐾) = (Base‘∅)) |
30 | 24, 26, 29 | 3eqtr4a 2805 | . 2 ⊢ (¬ 𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
31 | 23, 30 | pm2.61i 182 | 1 ⊢ 𝐶 = (Base‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 〈cop 4564 ‘cfv 6418 (class class class)co 7255 1c1 10803 ;cdc 12366 sSet csts 16792 ndxcnx 16822 Basecbs 16840 occoc 16896 toInccipo 18160 ocvcocv 20777 ClSubSpccss 20778 toHLcthl 20779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-tset 16907 df-ple 16908 df-ocomp 16909 df-ipo 18161 df-thl 20782 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |